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It is well-known that M.BLUM~s axioms for computational complexity measures [5] ad- 

mit very "unnatural" models (cf. [9]). In this note we give a preliminary report on 

our attempt to define a class of "natural" computational complexity measures. We 

restrict the discussion to Turing machine computations, however we shall also indi- 

cate how to generalize our approach to arbitrary "machine-like" computations. 

O. Some notations 

f:A ~ B 

+ 

dom f 

range f 

fog 

= {O,I,2,..o} 

(~i)i eN 

(~i)i e N 

card A 

f is a (possibly) partial function from A into B 

defined 

undefined 

domain of f 

range of f 

composition of functions: f o g(x) = f(g(x)) 

set of natural numbers 

acceptable numbering of all partial recursive functions 

associated complexity measure (in the sense of M. BLUM) 

cardinality of the set A 

I. Fundamental properties of path measures 

We consider a Turing machine as an instance of a class of machines as they are stu- 

died in the books of S. EILENBERG [8] and W.S. BRAINERD / L.H. LANDWEBER [6]. 

Let E be a fixed finite alphabet and F:= ~* × ~* the set of configurations. A con- 

figuration (a]...ar, ar+1.o.as) s P is intended to represent the following tape con- 

figuration: 

read/write head 

:,fa  a, lar+,L - . .  " 

A Turing machine can perform conditional instructions of the following form: 

if the symbol under the read/write head is equal to o, then 

move the read/write head one tape square to the right resp. left 
print a new symbol 
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Formally the set of instructions $ is a finite set of partial functions on F. For 

instance we can formalize the instruction "under condition ~ move left" by the fol- 

lowing partial function: 
[ 

(~,~v) if u 

O-left : F~ F, o-left(u,v) := 

L + otherwise 

A deterministic) Turing program ~ is given by a finite set of statements of the 

form (label, instruction, goto-label), an initial label and a set of terminal la- 

bels such that 

the label of a statement is not a terminal label, and whenever (I, ~I' ii) and 

(I, ~2' 12) are distinct statements of ~, then dom ~1N dom ~2 = ~" 

A path in J~ is a finite sequence of statements of ~ such that for every statement 

(except the last one) the goto-label equals the label of the next statement. A path 

P in ~ is called terminating if the goto-label of its last statement is a terminal 

label of ~; P is called (formally) successful if it is terminating and if the label 

of its first statement is the initial label of ~. If P = (|0,~i,11) ..... (In_l,~n,ln) 

is a path then the associated (order reversed) instruction sequence ~n...~l determi- 

nes a (partial) function IPE : r ÷ F, IPI := ~n .... o ~]; which is called the 

computation of P. 

It can easily be shown (cf. [6], lermma 4.1) that for every program~and for every 

configuration w = (u,v) E r there exists at most one successful path P in ~ such that 

w s dom IPI. A Turing program ~ computes the following function: 

rP[ (w) if P is the uniquely determined successful path in ~ such 

that w g dom JPI 
I~I (w) := 

+ if Such a path does not exist 

The standard measures of time and space are already completely determined by their 

definitions on paths respectively on instruction sequences associated with paths 

(cf. [4], § 3). Thus the standard measures are definable along the path structure 

of programs in an analogous way as we defined above the notion of computation. This 

observation leeds us to the following attempt to define a class of "natural" compu- 

tational complexity measures. 

First we introduce some further notations. We consider the instruction set ~ as a 

finite alphabet and denote the free monoid generated by ~ without the empty word 

by ~, that means is the set of all finite nonempty inStruction sequences. On 

the other hand each element ~ = ~0n...~P] e ~ determines a (possibly partial) func- 


