
Specifying Over-Constrained Problems in
Default Logic

Abdul Sat tar 1 , Aditya K. Ghose 2, Randy Goebel 3

1 School of Comp. and Info. Technology, Griffith University, Brisbane, Australia,
4111. sattar~cit.gu.edu.au

2 Knowledge Systems Group, Basset Department of Computer Science, University of
Sydney, Syndey NSW 2006, Australia. aditya~cs.su.oz.au

3 Department of Computing Science, University of Alberta, Edmonton, Alberta,
Canada, T6G 2H1. goebel~cs.ualberta.ca

Abs t r ac t . In the previous studies, it has been shown that the classical
constraint satisfaction problem (CSP) is deductive in nature, and can
be formulated as a classical theorem proving problem [1, 10]. Constraint
satisfaction problems for which an assignment of values to all variables
which satisfy all available constraints is not possible are referred to as
over-constrained problems. This paper shows how computing partial so-
lutions to over-constrained problems can be viewed as a default reasoning
problem. We propose two methods for translating over-constrained prob-
lem specifications with finite domains to two different variants of default
logic. We argue that default logic provides the appropriate level of ab-
straction for representing and analyzing over-constrained problem even
if other methods are used for actually computing solutions.

1 I n t r o d u c t i o n

A constraint satisfaction problem (CSP) involves a set of variables, a domain of
possible values for each variable, and a set of constraints, representing acceptable
and non-acceptable relations over subsets of variables. A solution is an assignment
of values to variables tha t satisfy all constraints. Constraint satisfaction problems
for which an assignment of values to each variable tha t satisfies all constraints
is not possible are called Over-Constrained Problems (OCP). If the domains of
variables in an OCP (resp. CSP) are restricted to be finite, we obtain the class of
Finite Over-Constrained Problems (FOCP) (resp. Finite Constraint Satisfaction
Problems (FCSP)) 4.

Over-constrained problems are ubiquitous in AI and arise due to conflicting
constraints in a domain of reasoning such as design problems in which conflicting
goals have to be achieved, diagnosis in which competing hypotheses explain
the set of symptoms, schedule conflicts etc. This problem has been variously
termed as partial constraint satisfaction [5], reasoning with constraint hierarchies
[14], reasoning with hard and soft constraints [12], or constraint relaxation and
preferences over relaxations in resolving conflicting schedules [4].

4 Mackworth [10] specifies a finite constraint satisfaction problem in an identical
manner

254

Logically, the notion of constraint satisfaction has been viewed as a deductive
reasoning problem [1, 10]. It has been previously shown that classsical CSP
can be formulated as a hypothetical reasoning problem using the THEORIST
system [13]. We show that formulating constraint satisfaction as a nonmonotonic
reasoning problem is general enough to cover OCP's in addition to classical
CSP's. Intuitively, conflicting constraints could be treated as conflicting defaults
in a default reasoning framework. Thus, finding a solution to a partial constraint
satisfaction problem corresponds to computing an extension of a default theory.

A variety of default reasoning systems exist in the literature. In this paper we
shall consider a restricted version of Reiter's default logic [11] as well as a recent
variant called prerequisite-free constrained default logic (PfConDL) presented
by Delgrande, Schanb and Jackson in [3]. We shall present translations from
finite over-constrained problem specifications to default theories in each of these
formalisms. We have earlier shown how default extension computation can be
viewed as solving over-constrained problems [7]. The research presented in this
paper thus completes the picture by presenting the reverse translation as well.

We maintain that default logic provides the appropriate level of abstraction
for representing and analyzing over-constrained problems even if other tech-
niques are used for actually computing solutions. The ability to specify such
problems in a formal language with well-defined semantics has several practical
advantages. These include semantically well-founded criteria for defining prefer-
ence relations on constraints and solutions as well as methods for revising OCP
specifications in a principles manner. Further, we believe that complexity results
from the default reasoning area can suggest tractable classes of OCP's.

2 O v e r - c o n s t r a i n e d p r o b l e m s

Formally, a constraint satisfaction.problem (CSP) specification consists of a finite
set of variables Var = { X 1 , . . . , Xn} , each associated with a domain of discrete
values, d l , . . . , dn, and a set of constraints Can = {C1,. . . , Cm}. Each constraint
is a relation defined on some subset of the set of variables. A constraint Ci
consists of the constraint-subset Si = {X~I,... , Xij(,)}, where Si C_ X, denoting
the subset of the variables on which Ci is defined and the relation reli defined
on Si such that reli C_ dil x . . . • dij(,).

Formally, an over-constrained problem is a constraint satisfaction problem for
which there is no assignment of values to all variables such that all the constraints
are satisfied. The following example from [5] illustrates the idea.

Example 1. Consider a robot seeking to select matching shoes, shirts and slacks
while getting dressed. It has two kinds of shoes (cordovans, sneakers), two kinds
of shirts (green, white) and three kinds of slacks (denims, dress blue, dress grey).
The only allowable combinations are: white shirts and cordovan shoes, cordovan
shoes and gray dress slacks, sneakers and denim slacks, green shirts and dress
gray slacks, white shirts and denim slacks and white shirts and dress blue slacks.

We shall formulate the problem as a CSP. We consider three variables: Shoes
(S1), Shirts ($2), and Slacks ($3). The corresponding domains are:

