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Abstract. Randomized search heuristics like simulated annealing and
evolutionary algorithms are applied successfully in many different situa-
tions. However, the theory on these algorithms is still in its infancy.
Here it is discussed how and why such a theory should be developed.
Afterwards, some fundamental results on evolutionary algorithms are
presented in order to show how theoretical results on randomized search
heuristics can be proved and how they contribute to the understanding
of evolutionary algorithms.

1 Introduction

Research on the design and analysis of efficient algorithms was quite successful
during the last decades. The very first successful algorithms (Dantzig’s simplex
algorithm for linear programming and Ford and Fulkerson’s network flow al-
gorithm) have no good performance guarantee. Later, research was focused on
polynomial-time algorithms (see Cormen, Leiserson, and Rivest (1990)) and this
type of research has been extended to approximation algorithms (see Hochbaum
(1997)) and randomized algorithms (see Motwani and Raghavan (1995)). Indeed,
designing and implementing an efficient algorithm with a proven performance
guarantee is the best we can hope for when considering an algorithmic pro-
blem. This research has led to a long list of efficient problem-specific algorithms.
Moreover, several paradigms of algorithms have been developed, among them
divide-and-conquer, dynamic programming, and branch-and-bound. There are
general techniques to design and analyze algorithms. However, these paradigms
are successful only if they are realized with problem-specific modules. Besides
these algorithms also paradigms for the design of heuristic algorithms have been
developed like randomized local search, simulated annealing, and all types of
evolutionary algorithms, among them genetic algorithms and evolution strate-
gies. These are general classes of search heuristics with many free modules and
parameters. We should distinguish problem-specific applications where we are
able to choose the modules and parameters knowing properties of the considered
problem and problem-independent realizations where we design a search heuri-
stic to solve all problems of a large class of problems. We have to argue why
one should investigate such a general scenario. One main point is that we obtain
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the frame of a general search heuristic where some details may be changed in
problem-specific applications. Moreover, there are at least two situations where
problem-independent algorithms are of particular interest. First, in many appli-
cations, one has not enough resources (time, money, specialists,. . . ) to design a
problem-specific algorithm or problem-specific modules. Second, often we have
to deal with “unknown” functions which have to be maximized. This scenario is
called black box optimization. It is appropriate for technical systems with free
parameters where the behavior of the system cannot be described analytically.
Then we obtain knowledge about the unknown function only by “sampling”.
The t-th search point can be chosen according to some probability distribution
which may depend on the first t−1 search points x1, . . . , xt−1 and their function
values f(x1), . . . , f(xt−1). One main idea of all randomized search heuristics is
to “forget” much of the known information and to make the choice of the pro-
bability distribution only dependent on the “non-forgotten” search points and
their f -values.

Our focus is the maximization of pseudo-boolean functions f : {0, 1}n → R

which covers the problems from combinatorial optimization. We investigate and
analyze randomized search heuristics which are designed to behave well on
“many” of the “important and interesting” pseudo-boolean functions. Obviously,
they cannot beat problem-specific algorithms and, also obviously, each rando-
mized search heuristic is inefficient for most of the functions. The problem is to
identify for a given randomized search heuristic classes of functions which are
optimized efficiently and to identify typical functions where the heuristic fails.
Such theoretical results will support the selection of an appropriate search heu-
ristic in applications. One may also assume (or hope) that the search heuristic
behaves well on a function which is “similar” to a function from a class where
it is proved that the heuristic is efficient. Moreover, the proposed results lead
to a better understanding of search heuristics. This again leads to the design
of improved search heuristics and gives hints for a better choice of the parame-
ters of the search heuristic. Finally, analytical results support the teaching of
randomized search heuristics.

In black box optimization the black box (or oracle) answers queries x with
f(x) where f : {0, 1}n → R is the function to be maximized. Since queries
are expensive, the search cost is defined as the number of queries. For a fixed
search heuristic let Xf be the random number of queries until “some good event”
happens. The good event in this paper is that a query point is f -maximal. Then
we are interested in the expected optimization time E(Xf ) and the success
probability function s(t) := Prob(Xf ≤ t). This is an abstraction from the real
problem, since obtaining the f -value of some optimal x does not imply that
we know that x is optimal. In applications, we additionally need good stopping
rules.

Our focus is on evolutionary algorithms which have been developed in the
sixties of the last century and which have found many applications during the
last ten years. Evolutionary algorithms are described in many monographs (Fogel
(1995), Goldberg (1989), Holland (1975), Schwefel (1995)) and in a more recent


