Law-Governed Internet Communities

Xuhui Ao, Naftaly Minsky, Thu D. Nguyen, and Victoria Ungureanu

Rutgers University, New Brunswick, NJ 08903, USA,
{ao,minsky, tdnguyen,ungurean}@cs.rutgers.edu

Abstract. We consider the problem of coordination and control of large
heterogeneous groups of agents distributed over the Internet in the con-
text of Law-Governed Interaction (LGI) [2J5]. LGI is a mode of interac-
tion that allows a group of distributed heterogeneous agents to interact
with each other with confidence that an explicitly specified policy, called
the law of the group, is complied with by everyone in the group.

The original LGI model [5] supported only ezplicit groups, whose mem-
bership is maintained and controlled by a central server. Such a central
server is necessary for applications that require each member of the group
to know about the membership of the entire group. However, in the case
where members do not need to know the membership of the entire group,
such a central server can become an unnecessary performance bottleneck,
as group size increases, as well as a single point of failure.

In this paper, we present an extension to LGI allowing it to support
implicit groups, also called communities, which require no central control
of any kind, and whose membership does not have to be regulated, and
might not be completely known to anybody.

1 Introduction

We consider the problem of coordination and control for large heterogeneous
groups of agents distributed over the Internet in the context of Law-Governed
Interaction (LGI) [2l5]. LGI is a mode of interaction that allows a group of dis-
tributed heterogeneous agents to interact with each other with confidence that
an explicitly specified policy, called the law of the group, is complied with by
everyone in the group. LGI has been designed specifically to satisfy the follow-
ing principles, which we consider critical for coordination in large heterogeneous
systems: (1) coordination policies need to be formulated explicitly rather than
being implicit in the code of the agents involved, (2) coordination policies need
to be enforced, and (3) the enforcement needs to be decentralized, for scalability.
LGI has been implemented in a toolkit called Moses, which has been applied to
a broad range of coordination and control applications, including: on-line recon-
figuration of distributed systems [6], security [4], and electronic commerce [3].
A group of agents interacting via LGI under a given law L is called an
L-group. LGI distinguishes between two kinds of L-groups, called explicit and
implicit groups, that differ in the manner in which a group is deployed and
in the management of its membership. Explicit groups have been discussed in
detail in [5]. The purpose of this paper is to introduce implicit groups, also called

A. Porto and G.-C. Roman (Eds.): COORDINATION 2000, LNCS 1906, pp. 133-[147, 2000.
© Springer-Verlag Berlin Heidelberg 2000



134 X. Ao et al.

communities, which are more general than explicit ones, and more suitable for
very large groups of heterogeneous agents operating over the Internet.

Currently, an explicit L-group G is established in Moses by creating a distin-
guished agent called the secretary of G, denoted as Sg, and defining into it the
law £, and specifying the initial membership and structure of G. Subsequent to
its initialization, Sg serves as a “gateway” to the group by admitting new mem-
bers into it, subject to law L. Sg also functions as a name-server for the group,
helping members to find each other’s location, and to verify mutual memberships
in the same group.

Such a secretary is necessary whenever the entire membership of the group
needs to be known, and it is appropriate for relatively small groups. This is
the case, for example, for a group operating under a token-ring protocol, where
the structure of the group, i.e., the placement of its members along a ring and
the existence of a single token among the members of the ring, are essential to
protocol. This ring structure can be defined by the secretary of the group as
its initial state, and, as demonstrated in [6], can be maintained as an invariant,
even if the membership of the group is allowed to change dynamically.

But such group management is neither necessary nor appropriate where no
knowledge of the entire group membership is required, or available, and where the
size of the group is too large to be comfortably handled by a single secretary.
An everyday example for such a situation is provided by the group of all car
drivers in a given city. All these drivers must obey the traffic laws of the city,
but generally there is nobody that knows the names of all these drivers, or their
total membership. Such conditions are becoming increasingly common in modern
distributed computing, as is illustrated by the following example.

Consider a distributed set of databases servers that provides access to an
heterogeneous set of clients. Suppose that for a client to consult an item in a
database or to update it, it needs to lock the item first. It is possible for a single
agent to maintain locks for several items (at several databases) at a time. It
is well known that this activity would be serializable if the following kind of
two-phase locking (TPL) protocol is strictly observed by all clients [10]:

New locks cannot be acquired after the first release of a lock (until the
agent has released all locks that it currently holds). That is, each trans-
action (representing some set of changes) is divided into two phases: a
growing phase of locking, and a shrinking phase of releasing locks. A
locked resource can be used during both phases.

While this protocol can be enforced by a central coordinator that mediates the
interaction between the distributed set of servers and their clients, such coordi-
nation would be quite unscalable. Under LGI, on the other hand, this protocol
can be formulated as a law T PL that is enforced locally at each client, allowing
for scalability, provided that the set of servers and their clients is not maintained
as an explicit TPL-group. Because the number of clients in this case might be
very large, the requirement that each of them enters the group via a single secre-
tary would create a bottleneck and a dangerous single point of failure. Moreover,



