
W. Emmerich and S. Tai (Eds.): EDO 2000, LNCS 1999, pp. 27-42, 2001.
 Springer-Verlag Berlin Heidelberg 2001

An Architecture Proposal for Enterprise Message
Brokers

Jörn Guy Süß1 and Michael Mewes2

1 Technical University Berlin
Einsteinufer 17, D-10587 Berlin / Germany

jgsuess@cs.tu-berlin.de
2 Fraunhofer Society for the Promotion of Applied Research,

Institute for Software and Systems Engineering
Mollstraße 1, 10178 Berlin / Germany
michael.mewes@isst.fhg.de

Abstract. In large enterprises, asynchronous communication and mes-
saging are gaining importance as integration solutions between applica-
tions. The concept of a message broker has been proposed as a univer-
sal mediator at the center of business. This paper gives a distinct defini-
tion of a message broker by enumerating enterprise critical criteria and
describes a reference architecture to meet these criteria. To arrive at the
relevant criteria, the message broker is positioned with respect to other
middleware solutions like CORBA and MOM/DAD, and limitations
and advantages are pointed out. From this comparison the catalogue of
critical criteria is deduced and examples are given of how commercial
broker products fulfill or fail these criteria. Finally, a reference archi-
tecture based on Java, XML and XSL(T) is described that meets the
criteria with respect to configuration, execution and extensibility.

1 Limitations of Object-Oriented Middleware Regarding EAI

Middleware, as envisioned by its promoters, primarily views the enterprise as a large,
distributed, object-oriented or component oriented system interacting on the basis of
synchronous remote procedure calls: Business is modeled as binary objects, talking to
each other over a transparent network. This situation comprises three implicit funda-
mental assumptions:

• The two partners must know of each other, i.e. their interfaces must be well pub-
lished and well defined. This implies that interfaces have to be global, stable
metadata.

• The two partners must be able to communicate. This requires compatibility to a
common network medium and a common means of binary communication.

• The two partners must be available; i.e. transactions must be possible. This re-
quires availability of all interfaces at all time or significant effort invested in ex-
ception handling for transaction failures.

28 Jörn Guy Süß and Michael Mewes

Apart from touching on the political implications of data ownership, which arise in
every integration effort, the aforementioned factors are also the main obstacles of
transferring traditional middleware development to the enterprise scale. Projects are
characterized by having local scope, local network or platform and local transactions.
As a consequence, the systems that result, although they are distributed to increase
performance and availability, are in fact local solutions. The following sections dis-
cuss the three aspects of the local character of middleware applications.

1.1 Local Scope

The interfaces for distributed systems are normally architected in a project context,
which emphasizes the delivery of end-to-end functionality. The middleware, being
"invisible" from both the database and the user interface, and therefore outside of the
scope of the process owner, often has its design time reduced to deliver project scope
functionality more quickly. As a result, interfaces are narrowed to the task the system
in question is being built for. Even if there is a consensus to build cross-company
reusable interfaces, the results are complex and unwieldy to use and suffer from the
inclusion of too much detail as shown by typical “Jack-Knife-Classes” [1]. For this
reason global interface repositories are very rare.

1.2 Local Network or Platform

The middleware approach also lightly assumes that there is such a thing as a binary
and network compatible platform. This assumption does not hold for the large number
of business critical batch systems, which lack a notion of networks, let alone TCP/IP.
The assumption is still hard to cover for the "open platforms", which make up the rest
of the business critical systems in the enterprise. Components and ORBs vary, some-
times even if bought from the same vendor, for different platforms or in different
versions. And they are regularly not interoperable when provided by different ven-
dors. Since problems in critical interoperability could not be attributed to any one
vendor, decision-makers are faced with a stark choice: Either the company opts to
choose one product vendor only. This means costly vendor lock-in. Additionally it
requires rigid discipline to enforce the standard. Or the company leaves the choice of
the middleware product to the project team, so that each system uses its own middle-
ware product. Most companies sensibly opt for the second choice.

1.3 Local Transactions

Finally, to create a business application from objects or components spread out across
an enterprise necessitates that the underlying structure can provide distributed trans-
actions spanning several objects or components on different levels. This feature
causes a major overhead if implemented. Or it eliminates the structure of the object
oriented interfaces if left out, leading to a flat TP-light, two-tier solution. Initially,
middleware packages did not even include transactions. Even today, programming
transactional middleware in an open manner is cumbersome at best. For this reason,
middleware architectures often consist of a well-architected non-transactional infor-
mation system, and a one-layer transaction system to perform updates, which maps
methods 1:1 to stored procedures of the underlying database.

