
Use of Negative Examples
in Training the HVS Semantic Model

Filip Jurčíček1, Jan Švec2, Jiří Zahradil2, and Libor Jelínek2

1 Center of Applied Cybernetics, University of West Bohemia
Pilsen, 306 14, Czech Republic

����������	
��
	
2 Department of Cybernetics, University of West Bohemia

Pilsen, 306 14, Czech Republic
�
�	�������	
��
	, �	����������	
��
	, �������������	
��
	

Abstract. This paper describes use of negative examples in training the HVS semantic
model. We present a novel initialization of the lexical model using negative examples
extracted automatically from a semantic corpus as well as description of an algorithm
for extraction these examples. We evaluated the use of negative examples on a closed
domain human-human train timetable dialogue corpus. We significantly improved the
standard PARSEVAL scores of the baseline system. The labeled F-measure (LF) was
increased from 45.4% to 49.1%.

1 Introduction

A corpus for semantic parsing usually consists of utterances (word sequences) and its
semantic annotation (semantic parse trees). In such corpus, there are positive and negative
examples which can be used for training statistical models.

A positive example is a pair of a word and its semantic annotation. A positive example
says that some word has some (concrete) semantic annotation. A negative example, similarly
to a positive example, is a pair of a word and its semantic annotation; however, it says about
a word that it does not have a semantic annotation. A negative example gives us much less
information than a positive example because we have to collect several negative examples to
replace one positive example.

In this paper, the statistical semantic parsing is a search of the sequence of concepts
S = c1, c2, . . . , cT that has the maximum aposteriori probability P(S|W ) for the word
observation W = w1, w2, . . . , wT . The search can be described as

S∗ = argmax
S

P(S|W )

= argmax
S

P(W |S)P(S) (1)

where P(S) is the semantic model and P(W |S) is the lexical model.
In Section 2, we describe the HVS model with the baseline initialization of a lexical model.

Section 3 details both positive and negative examples and the way how to collect negative
examples and a new initialization of the lexical model. In Section 4, we provide experimental
results. Finally, Section 5 closes this paper.

Petr Sojka, Ivan Kopeček and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 605–612, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



606 F. Jurčíček et al.

2 The HVS Model

The hidden vector state (HVS) model is an approximation of a pushdown automaton. A
vector state in the HVS model represents a stack of a pushdown automaton, which keeps
information that spans over several words.

The semantic information matching every word in an utterance is described by a sequence
of concepts from a leaf to a root of a semantic annotation (see Fig. 1). If we place concepts
along the way from the leaf to the root to a vector, than a derivation tree can be transformed
to a sequence of these vectors. We imposed a hard limit on the maximum depth of a stack
equal to four. For example, the word Prague is described by the vector state [STATION, TO,
DEPARTURE, EMPTY].

Fig. 1. An example of a full semantic parse tree with the corresponding stack sequence

The transitions between vector states are modeled by stack operations: popping 0 to 3
concepts from a stack, pushing a new concept onto a stack, and generating a word. The first
two operations belong to the semantic model which is dgiven by:

P(S) =
T +1∏

t=0

P(nt |ct−1[1, 4])·

· P(ct [1]|ct [2, 4]) (2)

where nt is the vector state shift operation and takes values in range 0, . . . , 4, and ct at word
position t is a vector state of 4 concepts, i.e. ct = [ct [1], ct [2], ct [2], ct [4]], where ct [1] is
a preterminal concept dominating the word wt and ct [4] is a root concept. The probability
P(nt |ct−1[1, 4]) represents a model for popping 0 to 3 concepts from a stack. The variable
nt defines the number of concepts which will be popped of a stack. If nt = 0, it relates to
growing a stack by one concept. If nt = 1, it relates to replacing preterminal concept ct [1]
by a new concept. If nt > 1, it relates to popping nt concepts and pushing a new concept.
For example, the transition from the vector state represented by the seventh block in Figure
1 is made by popping two concepts TO and STATION and pushing a new concept TIME
(n6 = 2). The probability P(ct [1]|ct [2, 4]) represents a model for pushing a new concept
ct [1] onto a stack. The concept ct [1] is given the rest of a stack ct [2, 4].


