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Abstract. Some issues about the generalization of ANN training are investi-
gated through experiments with several synthetic time series and real world 
time series. One commonly accepted view is that when the ratio of the training 
sample size to the number of weights is larger than 30, the overfitting will not 
occur. However, it is found that even with the ratio higher than 30, overfitting 
still exists. In cross-validated early stopping, the ratio of cross-validation data 
size to training data size has no significant impact on the testing error. For sta-
tionary time series, 10% may be a practical choice. Both Bayesian regulariza-
tion method and the cross-validated early stopping method are helpful when the 
ratio of training sample size to the number of weights is less than 20. However, 
the performance of early stopping is highly variable. Bayesian method outper-
forms the early stopping method in most cases, and in some cases even outper-
forms no-stop training when the training data set is large. 

1   Introduction 

ANNs are prone to either underfitting or overfitting (Sarle, 2002). A network that is 
not sufficiently complex can fail to detect fully the signal in a complicated data set, 
leading to underfitting. A network that is too complex may fit the noise, not just the 
signal, leading to overfitting, which may result in predictions far beyond the range of 
the training data. Therefore, one critical issue in constructing a neural network is 
generalization, namely, the capacity of an ANN to make predictions for cases that are 
unseen in the training set. Two commonly used techniques for generalization are 
cross-validated early stopping (e.g., Amari et al., 1997; Prechelt, 1998) and the regu-
larization (or weight decay) technique (e.g., Mackay, 1991; Neal, 1996). 

In cross-validated early stopping, the available data are usually split into two sub-
sets: training and cross validation (referred to as CV hereafter) sets. The training set is 
used for updating the network weights and biases. The CV set is used to monitor the 
error variation during the training process. When the validation error increases for a 
specified number of iterations, the training is stopped.  

Large weights can cause excessive variance of the output (Geman et al., 1992). A 
traditional way of dealing with the negative effect of large weights is regularization. 
The idea of regularization is to make the network response smoother through modifi-
cation in the objective function by adding a penalty term that consists of the mean 
square of all network coefficients. Mackay (1991) proposed a technique, called 
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Bayesian regularization, which automatically sets the optimal performance function to 
achieve the best generalization based on Bayesian inference techniques.  

In this paper, we will discuss three issues about the generalization of networks: (1) 
How many data are demanded to avoid overfitting; (2) How to split the training sam-
ples in cross-validated early stopping; (3) Which generalization technique is better for 
time series prediction, Bayessian regularization or cross-validated early stopping? 

2   Experiments and Result Analyses 

2.1   Data 

Seven data sets are used in this study, including three synthetic data sets and seven 
observed data sets. Three synthetic time series are as following: (1) Henon map 
(Henon, 1976) chaotic series; (2) The discretized chaotic Mackey-Glass flow series 
(Mackey and Glass, 1977); (3) A stochastic time series generated with an ANN model 
with a structure 5-3-1. 2% Gaussian noises are added to the two synthetic chaotic time 
series. The four observed real-world time series include: (1) The monthly sunspot 
number series (1749.1 ~ 2004.12); (2) The yearly sunspot number series (1700 to 
2004); (3) Monthly Southern Oscillation index (SOI) series (1933.1 ~ 2004.12); (4) 
and (5) daily and monthly streamflow series of the Rhine River at Lobith, the 
Netherlands (1901.1 ~ 1996.12); (6) and (7) daily and monthly streamflow series of 
the Danube River at Achleiten, Austria (1901.1 ~ 1990.12). 

De Oliveira et al. (2000) suggest to use m:2m:m:1 structure to model chaotic series. 
Follow their suggestion, we use 6:12:6:1 for Henon series as well as the discretized 
Mackey-Glass series. ANNs of 2-4-1 (Foresee and Hagan, 1997) and 18-6-1 (Con-
way, 1998) are used for yearly and monthly sunspot series. With trial and error proce-
dure, the chosen ANN structure is 4-3-1 for the SOI series and the two monthly flow 
series, 23-12-1 for daily flow of Danube, and 16-8-1 for daily flow of Rhine.  

The ANNs are constructed with Matlab Neural network toolbox. In all ANNs, tan-
sig transfer function is used in the hidden layer. To avoid of the problem of sensitivity 
to initial weights, simple ensemble technique is applied. That is, for each network, we 
run 10 times with different initial weights, then choose five ones, which have best 
training performance, and take the average of the outputs of the five networks. 

2.2   How Many Data Are Demanded to Avoid Overfitting? 

Amari et al. (1997) show that, when the ratio (referred to as R hereafter) of the train-
ing sample size to the number of weights is larger than 30, no overtraining is ob-
served. This view is accepted by many researchers as a guideline for training ANNs 
(e.g., Sarle, 2002). 

Is there such a clear cut-off value of R? We make experiments for three synthetic 
series with different values of R ranging from 5 to 50. To avoid the possible impact of 
nonstationarity, real world data are not applied here. We use the last 1000 points of 
each synthetic series as the test data, while the training data vary according to the 
value of R. Networks are trained with Levenberg-Marquardt backpropagation algo-
rithm and the training epoch is 1000. The variations in root mean squared error 
(RMSE) of training data and test data with different values of R are plotted in Fig. 1. 


