
Towards Context-Sensitive Intelligence

Holger Mügge1, Tobias Rho1, Marcel Winandy1, Markus Won1,
Armin B. Cremers1, Pascal Costanza2, and Roman Englert3

1 Institute of Computer Science III, University of Bonn,
Römerstr. 164, 53117 Bonn, Germany

{muegge, rho, winandy, won, abc}@iai.uni-bonn.de
2 Programming Technology Lab, Vrije Universiteit Brussel,

Pleinlaan 2, 1050 Brussels, Belgium
pc@p-cos.net

3 Deutsche Telekom Laboratories,
Ernst-Reuter-Platz 7, 10587 Berlin, Germany

Roman.Englert@telekom.de

Abstract. Even modern component architectures do not provide for
easily manageable context-sensitive adaptability, a key requirement for
ambient intelligence. The reason is that components are too large – pro-
viding black boxes with adaptation points only at their boundaries – and
to small – lacking good means for expressing concerns beyond the scope
of single components – at the same time. We present a framework that
makes components more fine-grained so that adaptation points inside of
them become accessible, and more coarse-grained so that changes of sin-
gle components result in the necessary update of structurally constrained
dependants. This will lead to higher quality applications that fit better
into personalized and context-aware usage scenarios.

1 Introduction

Most of the software sold nowadays are off-the-shelf products designed to meet
the requirements of very different types of users. One way to meet these re-
quirements is to design software that is flexible in such a way that it can be
used in very different contexts. Thus, look and feel, functionality, and behavior
have to be tailorable or even adaptive according to the task that needs to be
fulfilled. Especially out of an organizational context most users have to tailor
their software on their own. Taken into account that experiences in the use of
computer systems in general increase exceedingly, tailorable and end user devel-
opment applications become interesting topics. Component architectures were
basically developed with the idea of higher reusability of parts of software. Fur-
thermore, it is shown that they also build a basis for highly flexible software
[1]. In this case the same operations that are used to compose software out of
single components now can be applied to existing (component-based) software
during runtime. Therefore, the basis for a tailoring language consists basically of
three kinds of operations: choosing components, parameterizing them, binding

R. Morrison and F. Oquendo (Eds.): EWSA 2005, LNCS 3527, pp. 231–238, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



232 H. Mügge et al.

them together. In this way very simple operations that can be easily understood
by end users enhance the possibilities of tailoring software in a powerful way
(cf. [2]).

2 Intelligent Dealing with Complexity

Still, there are several open questions according to how tailoring can be eased
for end users. For instance, there is a need for a graphical front end that al-
lows visual tailoring techniques. Here one problem is how invisible components
can be presented to the users. In different studies it was shown (cf. [1]) that
users are able to tailor their GUIs very easily. Nevertheless, the problem of find-
ing an appropriate visual tailoring environment for both - visible and invisible
components - is still unsolved.

A second problem is that tailoring becomes harder when more flexibility is
needed. Flexibility in component architectures designed for tailorable applica-
tions is reached by a higher degree of decomposition [1]. That means, the more
components are needed to design software, the more flexible it can be tailored
as there are many fine-grained components that can be parameterized or ex-
changed.

Our goal is to design a stable basis for highly flexible software systems. Com-
ponent architectures are appropriate in this case and thus concentrating on the
second problem.

There are several approaches which may ease the use of software in different
contexts. In our case we believe in a combination of tailorable software (user is
in an active role) and adaptive techniques (software does adaptions by itself).
This might be helpful to cope with the complexity problem. Combining both
techniques means that tailoring activities are followed by automatic adaptions
of the system which checks for dependencies within the composition and adjusts
it.

Another point is the inspection of contexts: How do contexts look like and
how can they influence the software system? The abstraction of different use
contexts and their explicit description can reduce complexity of the components
as context descriptions influence more the whole composition. If the context
changes, users have only to switch the current context description which leads
to changed functionality of the whole composition.

Furthermore, one source of complexity is that many applications run dis-
tributed and networked. In such systems (client-server, peer-2-peer) tailoring
becomes even harder as adaptations on one client or one server might have de-
pendencies on another part of the application which runs on a different machine.
In such cases server components have to behave according to different clients. In
section 3 we describe three basic techniques which can overcome these problems.
After that we show how they can be integrated within one component framework
in section 4.


