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Abstract - In a recent work, a learning procedure for 

relaxation labeling algorithms has been introduced which 

involves minimizing a certain cost function with classical 

gradient methods. The gradient-based learning algorithm 

suffers from some inherent drawbacks that could prevent 

its application to real-world problems of practical interest. 

Essentially, these include the inability to escape from local 

minima and its computational complexity. In this paper, 

we propose using genetic algorithms to solve the relaxation 

labeling learning problem to overcome the difficulties with 

the gradient algorithm. Experiments are presented which 

demonstrate the superiority of the proposed approach both 

in terms of quality of solutions and robustness. 

1. INTRODUCTION 

Relaxation labeling processes are a broad class of 

popular techniques within the pattern recognition and 

machine vision domains [1]-[3]. They are parallel iterative 

procedures that attempt to combine local and contextual 

information in order to remove, or at least reduce, labeling 

ambiguities in classification problems where local 

measurements may be noisy or unreliable. In (continuous) 

relaxation labeling models, contextual information is 

embedded in a set of real-valued compatibility coefficients, 

which quantitatively express the degree of agreement of 

label configurations. Over the past years, several heuristic 

statistical-based interpretations such as correlation [1] or 

mutual information [4] have been formulated. 

Recently, a novel approach for determining the 

compatibilities of relaxation labeling procedures has been 

introduced which views the problem as one of learning [5]. 

This amounts to minimizing a certain cost function which 

quantifies the degree of "goodness" of a given set of 

compatibility strengths, so that the learning task is 

formulated in terms of an optimization problem. In 

previous work [5], classical gradient techniques were used 

to accomplish this. However, gradient-based learning 

algorithms exhibit some inherent limitations that could 

prevent them from being applied to high-dimensional 

problems of practical interest. These include the inability 

to escape from local minima and their high computational 

complexity - which is of the order of the fourth power of 

the number of labels (or classes) of the problem at hand 

[5]. In addition, we note that some relaxation schemes are 

even non-differentiable (see, e.g., [6]) and this completely 

prevents the gradient algorithm from being applied. 

In this paper we attempt to overcome the limitations of 

gradient-based relaxation labeling learning procedures by 

proposing the use of genetic algorithms (GAs) [7]. We 

found GAs to be advantageous not only because are able to 

find nearly globally optimal solutions without being 

trapped into local optima, but also because are less 

computationally expensive, requiring on each step a time 

roughly proportional to the square of the number of labels. 

2. RELAXATION LABELING AND THE 

LEARNING PROBLEM 

Relaxation labeling processes involve a set of objects 

B= {b1,···,bn } and a set of labels A= {l,· .. ,m}. The purpose 

is to label each object of B with one label of A. By means 

of some local measurement it is generally possible to 

construct, for each object bi' a vector plO) = (pl~),···,pl~)T 
such that pl~) ~ 0 (all i and A) and E ~pl~>= 1 (all i). Each 

plO) can therefore be interpreted as the a priori (non 

contextual) probability distribution of labels for bi. By 

simply concatenating p{O), p&O), .. . ,p~), we obtain an initial 

weighted labeling assignment for the objects of B that will 

be denoted by pea) E Rnm. The compatibility model is 
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represented by a four-dimensional matrix of real-valued 

nonnegative compatibility coefficients R: the element 

rij('\,p) measures the strength of compatibility between the 

hypotheses ".\ is on object bi" and "pis on object bj ." In 

what follows, we will find it convenient to "linearize" the 

compatibility matrix and consider it as a column vector r. 

The relaxation labeling algorithm accepts as input the 

initial labeling assignment p(O) and updates it iteratively 

taking into account the compatibility model, in order to 

achieve global consistency. At the tth step (t = 0, 1,2, ... ) the 

labeling is updated according to the following formula [1): 

pItH) = p(t)q(t)/ {!- p(t)q(t) 
,..\ .A IX L..J.IJ ." 

1'=1 
(1) 

where 

(2) 

The process is stopped when some termination condition is 

satisfied (e.g., when the distance between two successive 

labelings becomes negligible) and the final labeling is 

usually used to label the objects of B according to a 

maxima selection criterion (6). 
Now, let us focus on the learning problem. Suppose 

that a set of learning samples L = {L1, .. ·,LN } is given, 

where each sample Loy is a set of labeled objects of the form 

For each 'Y = L.N, let p(Loy) E R"oym denote the unambiguous 

labeling assignment for the objects of Loy, i.e., 

{
O' if",:f. .\lj 

p(Loy) = 
." 1, if", =.\7. 

Also, suppose that we have some mechanism for 

constructing an initial labeling p(loy) on the basis of the 

objects in Loy, and let p(Foy) denote the labeling produced by 

the relaxation algorithm when p(loy) is given as input. 

Broadly speaking, the learning problem for relaxation 

labeling is to detertnine a compatibility vector r so that 

the final labeling p(Foy) be as close as possible to the desired 

labeling p(Loy), for each 'Y' To do this, we can define a cost 

function measuring the loss incurred when p(Foy) is obtained 

instead of p(Loy), and attempt to tninimize it. Here, we use 

the following information-theoretic divergence m~asure 

recently proposed by Lin (8): 

(3) 

The total error over L can therefore be defined as 

(4) 

In conclusion, the learning problem for relaxation 

labeling can be stated as the problem of minimizing the 

function E with respect to r. In (5), this problem is solved 

by means o! a gradient method which begins with an 

initial point ro and produces a sequence {r,,} as follows: 

rA:+l = r" - "'"u", where u" is a direction vector determined 

from the gradient of E, and "'k is a suitable step size. 

3. LEARNING COMPATmn.ITY COEFFICIENTS 

WITH GENETIC ALGORITHMS 

Genetic algorithms are parallel search procedures 

largely inspired from the mechanisms of evolution in 

natural systems (7). They work with a constant-size 

population of chromosomes or individuals, each associated 

with a fitness value that determines its probability of 

sUrvIVIng at the next generation. In the present 

application, each chromosome represents a compatibility 

vector rj each coefficient rij(>',p) is mapped into a fixed­

length string of bits, and the whole chromosome is then 

obtained by simply concatenating these strings. 

The GA starts out with an ini~ial population of s 
members generally chosen at random and, in its simplest 

version, makes use of three basic operators: reproduction, 

crossover, and mutation. The most popular way of 

implementing the reproduction operator, commonly 

referred to as roulette-wheel selection (7), consists of 

choosing the chromosomes that are to be copied in the 

next generation according to a probability proportional to 

its fitness. One problem with this mechanism is that the 

best individuals need not survive in future generations and 

this can slow down the convergence of the algorithm. To 

overcome this drawback, we made use of an elitist 
reproduction mechanism (9) which consists of copying 

deterministically the best individual of each generation 

into the succeeding one, the other members being copied 

according to the usual roulette-wheel strategy. Once that 

the best individuals have been selected, the crossover 

operator is applied between pairs of individuals in order to 


