
Converting Parallel Code from Low-Level
Abstractions to Higher-Level Abstractions

Semih Okur1, Cansu Erdogan1, and Danny Dig2

1 University of Illinois at Urbana-Champaign, USA
{okur2,cerdoga2}@illinois.edu
2 Oregon State University, USA
digd@eecs.oregonstate.edu

Abstract. Parallel libraries continuously evolve from low-level to higher-
level abstractions. However, developers are not up-to-date with these
higher-level abstractions, thus their parallel code might be hard to read,
slow, and unscalable. Using a corpus of 880 open-source C# applica-
tions, we found that developers still use the old Thread and ThreadPool
abstractions in 62% of the cases when they use parallel abstractions.
Converting code to higher-level abstractions is (i) tedious and (ii) error-
prone. e.g., it can harm performance and silence the uncaught exceptions.

We present two automated migration tools, Taskifier and Simpli-
fier that work for C# code. The first tool transforms old style Thread
and ThreadPool abstractions to Task abstractions. The second tool trans-
forms code with Task abstractions into higher-level design patterns. Us-
ing our code corpus, we have applied these tools 3026 and 405 times,
respectively. Our empirical evaluation shows that the tools (i) are highly
applicable, (ii) reduce the code bloat, (iii) are much safer than manual
transformations. We submitted 66 patches generated by our tools, and
the open-source developers accepted 53.

1 Introduction

In the quest to support programmers with faster, more scalable, and readable
code, parallel libraries continuously evolve from low-level to higher-level abstrac-
tions. For example, Java 6 (2006) improved the performance and scalability of its
concurrent collections (e.g., ConcurrentHashMap), Java 7 (2011) added higher-level
abstractions such as lightweight tasks, Java 8 (2014) added lambda expressions
that dramatically improve the readability of parallel code. Similarly, in the C#
ecosystem, .NET 1.0 (2002) supported a Threading library, .NET 4.0 (2010)
added lightweight tasks, declarative parallel queries, and concurrent collections,
.NET 4.5 (2012) added reactive asynchronous operations.

Low-level abstractions, such as Thread, make parallel code more complex, less
scalable, and slower. Because Thread represents an actual OS-level thread, devel-
opers need to take into account the hardware (e.g., the number of cores) while
coding. Threads are heavyweight: each OS thread consumes a non-trivial amount
of memory, and starting and cleaning up after a retired thread takes hundreds

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 515–540, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



516 S. Okur, C. Erdogan, and D. Dig

of thousands of CPU cycles. Even though a .NET developer can use ThreadPool
to amortize the cost of creating and recycling threads, she cannot control the
behavior of the computation on ThreadPool. Moreover, new platforms such as Mi-
crosoft Surface Tablet no longer support Thread. .NET also does not allow using
the new features (e.g., async/await abstractions) with Thread and ThreadPool.
Furthermore, when developers mix old and new parallel abstractions in their
code, it makes it hard to reason about the code because all these abstractions
have different scheduling rules.

Higher-level abstractions such as .NET Task, a unit of parallel work, make
the code less complex. Task gives advanced control to the developer (e.g., chain-
ing, cancellation, futures, callbacks), and is more scalable than Thread. Unlike
threads, tasks are lightweight: they have a much smaller performance overhead
and the runtime system automatically balances the workload. Microsoft now en-
courages developers to use Task in order to write scalable, hardware independent,
fast, and readable parallel code [26].

However, most developers are oblivious to the benefits brought by the higher-
level parallel abstractions. In recent empirical studies for C# [18] and Java [25],
researchers found that Thread is still the primary choice for most developers. In
this paper we find similar evidence. Our corpus of the most popular and active
880 C# applications on Github [12] that we prepared for this paper, shows
that when developers use parallel abstractions they still use the old Thread and
ThreadPool 62% of the time, despite the availability of better options. Therefore,
a lot of code needs to be migrated from low-level parallel abstractions to their
higher-level equivalents.

The migration has several challenges. First, developers need to be aware of
the different nature of the computation. While blocking operations (e.g., I/O
operations, Thread.Sleep) do not cause a problem in Thread-based code, they
can cause a serious performance issue (called thread-starvation) in Task-based
code. Because the developers need to search for such operations deep in the call
graph of the concurrent abstraction, it is easy to overlook them. For example,
in our corpus of 880 C# applications, we found that 32% of tasks have at least
one I/O blocking operation and 9% use Thread.Sleep that blocks the thread
longer than 1 sec. Second, developers need to be aware of differences in handling
exceptions, otherwise exceptions become ineffective or can get lost.

In this paper, we present an automated migration tool, Taskifier, that trans-
forms old style Thread and ThreadPool abstractions to higher-level Task abstrac-
tions in C# code. During the migration, Taskifier automatically addresses the
non-trivial challenges such as transforming blocking to non-blocking operations,
and preserving the exception-handling behavior.

The recent versions of parallel libraries provide even higher-level abstrac-
tions on top of Tasks. For example, the Parallel abstraction in C# supports
parallel programming design patterns: data parallelism in the form of parallel
loops, and fork-join task parallelism in the form of parallel tasks co-invoked in
parallel. These dramatically improve the readability of the parallel code. Con-
sider the example in Code listing 1.1, taken from ravendb [1] application. Code


