

G. Lee et al. (Eds.): ICHIT 2012, LNCS 7425, pp. 650–656, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Scheduling Real-Time Tasks
in the Presence of Dynamic Software Updates

Dong Kwan Kim

Department of Multimedia Engineering,
Catholic University of Pusan,

Pusan, 609-757, Korea
dongkwan@cup.ac.kr

Abstract. Although dynamic software updating has addressed various problems
on software maintenance, there are no noticeable outcomes in applying it to
real-time systems. In this paper, a novel EDF-based scheduling algorithm is
presented to update real-time systems dynamically while preserving the
schedulability of tasks and satisfying precedence constraints intrinsically
imposed between the updated and updating tasks.

Keywords: Dynamic Software Updates, Real-time Systems, Earliest Deadline
First (EDF), Total Bandwidth Server (TBS).

1 Introduction

Dynamic Software Update (DSU) [1] changes the code of a computer program while
it runs, thus saving the programmer's time and using computing resources more
productively. This paper applies DSU to real-time applications-a computing domain
characterized by long-running operations [2] and high reliability.

For safe updates, an object to be updated needs to reach a quiescent point where
updating systems block all other objects from accessing it during updates [1]. Since the
updated object remains suspended during updates, it cannot restart the execution until
the dynamic update task has completed. Therefore, a scheduling algorithm considering
dynamic updates should ensure precedence constraints between an updating task and an
updated task. Fig. 1. shows Earliest Deadline First (EDF) schedule without considering
the precedence constraint. τ1 and τ2 are periodic tasks and a dynamic update task, dut,
updates τ2 dynamically. In this example, the EDF schedule violates the following
precedence constraint: τ2 depends on dut: dut → τ2, which implies that the pure EDF
algorithm is not suitable to the DSU for real-time systems.

To the best of my knowledge, most of dynamic updating systems have been
applied to non-real-time systems. A novel EDF-based scheduling algorithm is
described and demonstrated to update real-time tasks at runtime.

In this paper, the TB(N) algorithm proposed in [3] is modified to assign the
optimal deadline of dynamic update tasks. Furthermore, a real-time scheduling
algorithm for DSU is introduced. The algorithm guarantees the schedulability of

 Scheduling Real-Time Tasks in the Presence of Dynamic Software Updates 651

periodic tasks and satisfies precedence constraints intrinsically imposed between the
updated and updating tasks. The performance of the proposed scheduling algorithm is
evaluated by comparing with the Rate Monotonic (RM)-based scheduling algorithm
for DSU [4] in terms of the response time of a dynamic update task and hard real-time
guarantees of all running tasks.

0 2 4 6 8 10 12

τ1(1,3)

τ2(2,5)

dut(2, 11)

Updated task
τ2 preempted dut

Fig. 1. EDF schedule disregarding precedence constraints

2 System Model

The algorithm considers a set of n preemptable periodic tasks, {τ1, τ2, … , τn} and
m preemptable dynamic update tasks, { J1, J2 , … , Jm}. The dynamic update tasks
can update the periodic tasks at runtime. Each τi has a number of invocations, that
is, jobs, which are released periodically with hard deadlines and known execution
times. Each Jk has a known execution time but does not have an explicit deadline.
The instances of the dynamic update task are triggered aperiodically when
requested.

The paper introduces a deadline assignment algorithm for dynamic update tasks
and an EDF-based preemptable scheduling algorithm for periodic tasks in the
presence of dynamic update tasks. The proposed algorithms are based on the
following assumptions:

1. All tasks are executed on a uniprocessor system.
2. At t = 0, all periodic tasks are activated.
3. Deadline ties are always broken in favor of the dynamic update task.
4. The dynamic update task consists of three steps: suspending an old version of

an updated task, replacing the old version with new one, and restarting the new
version of the updated task.

5. Dynamic update tasks are processed in a First-In-First-Out order, thus a
dynamic update task cannot preempt another dynamic update task.

There are three ways to assign the processor utilization for a dynamic update task,
dut in order to determine its deadline. In the first approach, the scheduling
algorithm assigns the server utilization factor, Us for dut. Us satisfies the condition
Up + Us ≤ 1 where Up is the utilization factor of the periodic task set.

