Efficient Evaluation of Large Polynomials

Charles E. Leiserson?, Liyun Li2, Marc Moreno Maza2, and Yuzhen Xie2

L CSAIL, Massachussets Institute of Technology, Cambridge MA, USA
2 Department of Computer Science, University of Western Ontario, London ON, Canada

Abstract. Minimizing the evaluation cost of a polynomial expression is a funda-
mental problem in computer science. We propose tools that, for a polynomial P
given as the sum of its terms, compute a representation that permits a more effi-
cient evaluation. Our algorithm runs in d (nt)o(l) bit operations plus dt© ) oper-
ations in the base field where d, n and ¢ are the total degree, number of variables
and number of terms of P. Our experimental results show that our approach can
handle much larger polynomials than other available software solutions. More-
over, our computed representation reduce the evaluation cost of P substantially.

Keywords: Multivariate polynomial evaluation, code optimization, Cilk++.

1 Introduction

If polynomials and matrices are the fundamental mathematical entities on which com-
puter algebra algorithms operate, expression trees are the common data type that com-
puter algebra systems use for all their symbolic objects. In MAPLE, by means of
common subexpression elimination, an expression tree can be encoded as a directed
acyclic graph (DAG) which can then be turned into a straight-line program (SLP), if
required by the user. These two data-structures are well adapted when a polynomial (or
a matrix depending on some variables) needs to be regarded as a function and evaluated
at points which are not known in advance and whose coordinates may contain “sym-
bolic expressions”. This is a fundamental technique, for instance in the Hensel-Newton
lifting techniques [6|] which are used in many places in scientific computing.

In this work, we study and develop tools for manipulating polynomials as DAGs.
The main goal is to be able to compute with polynomials that are far too large for being
manipulated using standard encodings (such as lists of terms) and thus where the only
hope is to represent them as DAGs. Our main tool is an algorithm that, for a polynomial
P given as the sum its terms, computes a DAG representation which permits to evaluate
P more efficiently in terms of work, data locality and parallelism. After introducing the
related concepts in Section[2] this algorithm is presented in Section 3l

The initial motivation of this study arose from the following problem. Consider
a = apx™ 4+ -+ ax +apand b = bpx™ + -+ + bix + by twWo generic uni-
variate polynomials of respective positive degrees m and n. Let R(a, b) be the resultant

of a and b. By generic polynomials, we mean here that a.,, ..., a1, ag,bn, ..., b1, bo
are independent symbols. Suppose that a,,,, ..., a1, ag, by, . .., b1, by are substituted to
polynomials c,, ..., a1, a0, Bn, . .., 01, Bo in some other variables c1, ..., cp,. Let us

denote by R(«, 3) the “specialized” resultant. If these «;’s and ;s are large, then

K. Fukuda et al. (Eds.): ICMS 2010, LNCS 6327, pp. 342@ 2010.
(© Springer-Verlag Berlin Heidelberg 2010



Efficient Evaluation of Large Polynomials 343

computing R(«, 3) as a polynomial in ¢y, ..., cp,, expressed as the sum of its terms,
may become practically impossible. However, if R(a,b) was originally computed as a
DAG with @y, ..., a1,a0,by, ..., b1, by as input and if the o;’s and ;s are also given
as DAGs with ¢y, . . ., ¢p as input, then one may still be able to manipulate R(a, 3).

The techniques presented in this work do not make any assumptions about the input
polynomials and, thus, they are not specific to resultant of generic polynomials. We
simply use this example as an illustrative well-known problem in computer algebra.

Given an input polynomial expression, there are a number of approaches focusing on
minimizing its size. Conventional common subexpression elimination techniques are
typical methods to optimize an expression. However, as general-purpose applications,
they are not suited for optimizing large polynomial expressions. In particular, they do
not take full advantage of the algebraic properties of polynomials. Some researchers
have developed special methods for making use of algebraic factorization in eliminat-
ing common subexpressions [[1L7]] but this is still not sufficient for minimizing the size
of a polynomial expression. Indeed, such a polynomial may be irreducible. One eco-
nomic and popular approach to reduce the size of polynomial expressions and facilitate
their evaluation is the use of Horner’s rule. This high-school trick for univariate poly-
nomials has been extended to multivariate polynomials via different schemes [8L9U314].
However, it is difficult to compare these extensions and obtain an optimal scheme from
any of them. Indeed, they all rely on selecting an appropriate ordering of the variables.
Unfortunately, there are n! possible orderings for n variables.

As shown in Section ] our algorithm runs in polynomial time w.r.t. the number of
variables, total degree and number of terms of the input polynomial expression. We have
implemented our algorithm in the Cilk++ concurrency platform. Our experimental
results reported in Section LY illustrate the effectiveness of our approach compared to
other available software tools. For 2 < n,m < 7, we have applied our techniques to the
resultant R(a, b) defined above. For (n, m) = (7, 6), our optimized DAG representation
can be evaluated sequentially 10 times faster than the input DAG representation. For
that problem, none of code optimization software tools that we have tried produces a
satisfactory result.

2 Syntactic Decomposition of a Polynomial

Let K be a field and let 1 > - - - > x,, be n ordered variables, with n > 1. Define X =
{z1,...,z,}. We denote by K[X] the ring of polynomials with coefficients in K and
with variables in X . For a non-zero polynomial f € K[X], the set of its monomials is
mons(f), thus f writes f = >, ons(f) Cm M, Where, for all m € mons(f), ¢ € K
is the coefficient of f w.r.t. m. The set terms(f) = {¢,, m | m € mons(f)} is the set
of the terms of f. We use fiterms(f) to denote the number of terms in f.

Syntactic operations. Let g, h € K[X]. We say that gh is a syntactic product, and we
write g h, whenever fiterms(g h) = fiterms(g) - fterms(h) holds, that is, if no grouping
of terms occurs when multiplying g and h. Similarly, we say that g + h (resp. g — h)
is a syntactic sum (resp. syntactic difference), written g @ h (resp. g © h), if we have
fterms(g+h) = fterms(g)+fterms(h) (resp. fterms(g—h) = fterms(g)+fterms(h)).



