
Initial Algebra Semantics for Cyclic Sharing Structures

Makoto Hamana

Department of Computer Science, Gunma University, Japan
hamana@cs.gunma-u.ac.jp

Abstract. Terms are a concise representation of tree structures. Since they can
be naturally defined by an inductive type, they offer data structures in functional
programming and mechanised reasoning with useful principles such as structural
induction and structural recursion. In the case of graphs or ”tree-like” structures –
trees involving cycles and sharing – however, it is not clear what kind of inductive
structures exists and how we can faithfully assign a term representation of them.
In this paper we propose a simple term syntax for cyclic sharing structures that
admits structural induction and recursion principles. We show that the obtained
syntax is directly usable in the functional language Haskell, as well as ordinary
data structures such as lists and trees. To achieve this goal, we use categorical
approach to initial algebra semantics in a presheaf category. That approach fol-
lows the line of Fiore, Plotkin and Turi’s models of abstract syntax with variable
binding.

1 Introduction

Terms are a convenient, concise and mathematically clean representation of tree struc-
tures used in logic and theoretical computer science. In the field of traditional algo-
rithms or graph theory, one usually uses unstructured representations for trees, such
as a pair (V, E) of vertices and edges sets, adjacency lists, adjacency matrices, pointer
structures, etc, which are more complex and unreadable than terms. We know that term
representation provides a well-structured, compact and more readable notation.

However, consider the case of “tree-like” structures such as that depicted in
Fig. 1. This kind of structures – graphs, but almost trees involving (a few) exceptional

Fig. 1.

edges – quite often appears in logic and computer sci-
ence. Examples include internal representations of ex-
pressions in implementations of functional languages
that share common sub-expressions for efficiency, con-
trol flow graphs of imperative programs used in static
analysis and compiler optimizations [CFR+91], data
models of XML such as trees with pointers [CGZ05],
proof trees admitting cycles for cyclic proofs [Bro05],
and term graphs in graph rewriting [BvEG+87, AK96].

Suppose we want to treat such structures in a pure
functional programming language such as Haskell,

Clean, or a proof assistant such as Coq, Agda [Nor07]. In such a case, we would have to
abandon the use of naive term representation, and would instead be compelled to use an

P.-L. Curien (Ed.): TLCA 2009, LNCS 5608, pp. 127–141, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

128 M. Hamana

unstructured representation such as (V, E), adjacency lists, etc. Furthermore, a serious
problem is that we would have to abandon structural recursion/induction to decompose
them because they look “tree-like” but are in fact graphs, so there is no obvious in-
ductive structure in them. This means that in functional programming, we cannot use
pattern matching to treat tree-like structures, which greatly decreases their convenience.
This lack of structural induction means failure of being an inductive type. But, are there
really no inductive structures in tree-like structures? As might be readily apparent, tree-
like structures are almost trees and merely contain finite pieces of information. The only
difference is the presence of “cycles” and “sharing”.

In this paper, we give an initial algebra characterisation of cyclic sharing structures
in the framework of categorical universal algebra. The aim of this paper is to derive the
following practical goals from the initial algebra characterisation.

[I] To develop a simple term syntax for cyclic sharing structures that admits structural
induction and structural recursion principles.

[II] To make the obtained syntax directly usable in the current functional languages
and proof assistants, as well as ordinary data structures, such as lists and trees.

The goal [I] also intends that the term syntax exactly characterises cyclic sharing struc-
tures (i.e. no junk terms exist) to make structural induction possible. The goal [II] in-
tends that the obtained syntax should be lightweight as possible, which means that e.g.
well-formedness and equality tests on terms for cyclic sharing structures should be fast
and easy, as are ordinary data structures such as lists and trees. We do not want many
axioms to characterise the intended structures, because in programming situation, to
check the validity of axioms every time is expensive and makes everything compli-
cated. Therefore, ideally, formulating structures without axioms is best. The goal [II] is
rephrased more specifically as:

[II’] To give an inductive type that represents cyclic sharing structures uniquely. We
therefore rely on that a type checker automatically ensures the well-formedness
of cyclic sharing structures.

We choose a functional programming language Haskell to concretely show it in this pa-
per. To archive these goals, we use the category theoretic formulation of initial algebra
semantics.

Recently, varying the base category other than Set, initial algebra semantics for
functor-algebras has proved to be useful framework to characterise various mathemat-
ical/computational structures in a uniform setting. We list several: S -sorted abstract
syntax is characterised as initial algebra in SetS [Rob02], second-order abstract syntax
as initial algebra in SetF [FPT99, Ham04, Fio08] (where F is the category of finite sets),
explicit substitutions as initial algebras in the category [Set, Set] f of finitary functors
[GUH06], recursive path ordering for term rewriting systems as algebras in the cate-
gory LO of linear orders [Has02], nested datatypes [GJ07] and generalised algebraic
datatypes (GADTs) [JG08] in functional programming as initial algebras in [C,C] and
[|C|,C] respectively, where C is a ω-cocomplete category.

This paper adds a further example to the above list. We characterise cyclic sharing
structures as an initial algebra in the category (SetT

∗
)T, where T is the set of all “shapes”

