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Abstract. In this paper we investigate the computational complexity of
knot theoretic problems and show upper and lower bounds for planarity
problem of signed and unsigned knot diagrams represented by Gauss
words. Due to the fact the number of crossing in knots is unbounded,
the Gauss words of knot diagrams are strings over infinite (unbounded)
alphabet. For establishing the lower and upper bounds on recognition
of knot properties we study these problems in a context of automata
models over infinite alphabet.

1 Introduction

Algorithmic and computational topology is a new growing branch of modern
topology. Much of the recent effort has focused on classifying the inherent com-
plexity of topological problems. In this paper we investigate the computational
complexity of knot theoretic problems and show upper and lower bounds for pla-
narity problem of signed and unsigned knot diagrams. The main goal of proposed
approach is to give a new insight on knot problems and characterise knot prob-
lems according to their computational complexity. The results presented in this
paper were achieved by a combination of methods from knot theory, automata
theory and computational complexity.

Knot theory is the area of topology that studies mathematical knots and
links. A knot (a link) is an embedding of a circle (several circles) in 3-dimensional
Euclidean space, R

3, considered up to a smooth deformation of an ambient space.
It is well established and exciting area of mathematical research with strong
connections with topology, algebra and combinatorics. Examples of interactons
between knot theory and computer science include works on formal language
theory [1], quantum computing [2,3,4] and computational complexity [5].

Knots can be described in various ways, including various discrete representa-
tions. For example, a common method of describing a knot is a planar diagram
called a knot diagram. A knot diagram is a projection of the knot onto a plane,
where at each crossing we must indicate which section is ”over” and which is
”under”, so as to be able to recreate the original knot. As an additional informa-
tion we can also add a label (“‘+“ or “-“) to each of the crossing for representing
orientation of its strands.

A knot diagram can be encoded as a string of symbols Oi’s (over) and Ui’s
(under) also known as Gauss word. The procedure of writing a Gauss word can
be described as follows: Starting from a base point on the circle, write down the
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labels of the crossings in the counterclockwise direction, e.g. the trefoil K can
be defined by a Gauss word U1

+O2
+U3

+O1
+U2

+O3
+, where indices indicate

an (arbitrary) order of the crossings in the knot diagram and signs stand for
orientation of each crossing. Likewise, links can be represented by several Gauss
words - one for each component of the link.

As you can see the construction of the Gauss word is quite straightforward
by reading visited crossings travelling along a circle. The inverse problem of
constructing a knot from some strings of symbols from the set of Oi’s and Ui’s
is harder and it is not always possible. It may happen that some Gauss words
would not correspond to any classical (planar) diagrams. In such case we say that
a Gauss word corresponds to a non-planar knot where any of its diagram should
contain virtual crossings (i.e. which are not listed in the Gauss word). Most of
the problems of recognising knots properties (such as virtuality, unknottedness,
equivalence) are known to be decidable, with different time complexity. However
their complexity in terms of computational power of devices needed to recognise
the knot properties was not studied yet. In this paper we address this problem
and provide first known bounds for some knot problems in this context.

The central problem which we are studying in this paper is to determine
whether a given Gauss word corresponds to planar or non-planar knot. Due
to the fact the number of crossing in knots is unbounded, the Gauss words of
knot diagrams are strings over infinite (unbounded) alphabet. In this context
we cannot estimate computational complexity in terms of classical models over
finite alphabets and need to consider a new hierarchy of languages and models
over infinite alphabet. Such models were recently introduced in [6,7].

In Section 2 we describe and extend the models of automata over infinite
alphabet that we used for establishing the lower and upper bounds on recognition
of knot properties. Then in Section 3 we show that the language of planar (non-
planar) signed Gauss words can be recognised by deterministic two-way register
automata by simulation of recently discovered linear time algorithm proposed in
[8]. Due to the fact that the algorithm presented in [8] allows to check planarity
property not only for knots but also for links we think that the proposed idea
of recognising planarity by register automata can be extended for links after
some minor modification. The result is final in a sense that the power of non-
deterministic one-way register automata is not even enough to recognise whether
an input is a Gauss word. We also conjecture that planarity problem for unsigned
Gauss words is harder than the the same problem for signed Gauss words and
cannot be solved by register or k-pebble automata over infinite alphabet. For
the case of unsigned Gauss words we provide the upper bound by showing that
planarity can be checked by deterministic linearly bounded memory automata.

2 Automata over Infinite Alphabets

Let D be an infinite set called an alphabet. A word, or a string over D, or shortly,
D-word or D-string is a finite sequence d1, . . . dn where di ∈ D, i = 1, . . . , n. A
language over D (D-language) is a set of D-words. For a word w and a symbol


