
A Conference Management System Based on the
iData Toolkit

Rinus Plasmeijer and Peter Achten

Software Technology, Nijmegen Institute for Computing and Information Sciences,
Radboud University Nijmegen
{rinus,P.Achten}@cs.ru.nl

Abstract. The iData Toolkit is a purely functional toolkit for the Clean
programming language to create highly dynamic, interactive, thin client
web applications on a high level of abstraction. Its main building block
is the iData element. With this element the programming effort of the
application programmer is reduced significantly because it takes care of
state handling, rendering, user interaction, and storage management au-
tomatically. In this paper we show that it can be used for even more
tasks: handle destructively shared model data, perform version manage-
ment, and state consistency management. This can be done entirely on
top of the iData Toolkit. The toolkit comes with a new programming
paradigm. We illustrate the extended power of the toolkit and program-
ming paradigm by a case study of a conference management system.

1 Introduction

The purely functional language Clean has a library to create highly dynamic, in-
teractive, thin client web applications on a high level of abstraction. This library
is the iData Toolkit [11,13,12].It is based on the language support for generic pro-
gramming [2,3]. The toolkit’s main building block is the iData element, which is
a versatile unit that automates a great deal of things for the programmer:
– it manages a state of arbitrary type;
– it renders an HTML form representation of its state;
– it handles user actions made with these forms in a type safe way;
– it stores its state either in the page or at the server side on disk.

Web applications are created by interconnecting an arbitrary collection of iData
elements via their states and rendered forms. In the past years we have obtained
experience in programming applications with iData elements, and their desktop
GUI predecessors, the GEC elements of the GEC Toolkit [1]. This has resulted in
a new programming paradigm. In the iData Toolkit programming paradigm the
application programmer models the application as an information system, by
identifying the entities and entity-relations and specify them as pure functional
data structures and pure functions. The generic power of the toolkit is used
subsequently to handle as much as possible automatically. Human intervention is
still required, but the power of generic programming is that it allows application
programmers to specialize the generic scheme where needed.

Z. Horváth, V. Zsók, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 108–125, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Conference Management System Based on the iData Toolkit 109

When constructing programs with the programming paradigm, it turns out
that the ‘classic’ version of the toolkit has a number of limitations:

– Model types are pure functional data structures. Although functional lan-
guages can define and handle shared data structures, they cannot handle
destructively shared data because this destroys referential transparency.
However, in information systems destructive sharing is a natural pheno-
menon, because data should not be stored redundantly. Hence, an iData
Toolkit application programmer can not model destructive sharing directly,
but instead has to program this on top of the functional data structures and
for each and every edit operation. This is cumbersome, error-prone, and an
example of boilerplate code that should be automated once and for all.

– It is important in multi-user web applications with several persistent shared
states to manage versions of these states correctly. Again, the programmer
might be able to program this, but it should be dealt with once and for all.

– The final limitation concerns the consistency of states. The iData Toolkit is
edit driven, i.e.: it reacts to (type safe) edit operations of the application user
who can alter a part of the state of one of the iData elements. In general, it
may well be the case that during a sequence of edit operations, the set of
states is inconsistent. In that case, the application should not commit this
configuration of states to disk, but rather work on a local version.

In this paper we show that the above concerns can be handled automatically
by the iData elements, on top of the ‘classic’ iData Toolkit. We believe that this
provides further evidence to the fact that iData elements form a powerful ab-
straction mechanism to create highly interactive and dynamic web applications
with. We illustrate the use of the new techniques by studying the case of a
conference management system. Conference management systems are software
systems that support conference managers, programme committee members, and
authors with a number of tasks, such as the electronic paper submission process,
paper distribution and reviewing process, deadline management, and the paper
discussion process. They serve as a good example of the domain of web applica-
tions that suffer from the limitations that have been presented above. We show
that the resulting system widens the application domain of the toolkit while still
adhering to its programming paradigm.

This paper is structured as follows: we first briefly present the iData Toolkit in
Sect. 2. Next, in Sect. 3, we discuss the case study of a conference management
system. Implementation details are presented in Sect. 4. Finally, related work is
discussed in Sect. 5, and we conclude in Sect. 6.

2 The iData Toolkit

In this section we present the ‘classic’ iData Toolkit, i.e. the toolkit without the
extensions that are discussed in the next sections. First, we give an informal
explanation of iData elements, which are the building blocks of the iData Toolkit
(Sect. 2.1). Second, we present the programming paradigm (Sect. 2.2).


