Evolution of a Controller with a Free Variable Using
Genetic Programming

John R. Koza

Stanford University, Stanford, California
koza@stanford.edu

Jessen Yu
Genetic Programming Inc., Los Altos, California
jyu@cs.stanford.edu

Martin A. Keane
Econometrics Inc., Chicago, Illinois
makeane@ix.netcom.com

William Mydlowec
Genetic Programming Inc., Los Altos, California
myd@cs.stanford.edu

ABSTRACT

A mathematical formula containing one or more free variables is "general” in the
sense that it provides a solution to an entire category of problems. For example, the
familiar formula for solving a quadratic equation contains free variables representing
the equation’s coefficients. Previous work has demonstrated that genetic programming
can automatically synthesize the design for a controller consisting of a topological
arrangement of signal processing blocks (such as integrators, differentiators, leads,
lags, gains, adders, inverters, and multipliers), where each block is further specified
("tuned") by a numerical component value, and where the evolved controller satisfies
user-specified requirements. The question arises as to whether it is possible to use
genetic programming to automatically create a "generalized" controller for an entire
category of such controller design problems — instead of a single instance of the
problem. This paper shows, for an illustrative problem, how genetic programming can
be used to create the design for both the topology and tuning of controller, where the
controller contains a free variable.

1 Introduction

Automatic controllers are ubiquitous in the real world (Astrom and Hagglund 1995;
Boyd and Barratt 1991; Dorf and Bishop 1998). The output a controller is fed into the
to-be-controlled system (conventionally called the plant). The purpose of a controller
is to force, in a meritorious way, the plant’s response to match a desired response
(called the reference signal or setpoint). For example, the cruise control device in an
car continuously adjusts the engine (the plant) based on the difference between the
driver-specified speed (reference signal) and the car’s actual speed (plant response).

R. Poli et al. (Eds.): EuroGP 2000, LNCS 1802, pp. 91-105, 2000.
© Springer-Verlag Berlin Heidelberg 2000



92 J.R. Koza et al.

The measure of merit for controllers typically incorporate a variety of interacting
and conflicting considerations. Examples are the time required to force the plant
response to reach a desired value, the degree of success in avoiding significant
overshoot beyond the desired value, the time required for the plant to settle, the ability
of the controller to operate robustly in the face of minor variations in the actual
characteristics of the plant, the ability of the controller to operate robustly in the face
of disturbances that may be introduced between the controller and the plant’s input, the
ability of the controller to operate robustly in the face of sensor noise that may be
added to the plant output, the controller’s compliance with various frequency domain
constraints (e.g., bandwidth), and the controller’s compliance with constraints on the
magnitude of the control variable or the plant’s internal state variables.

Controllers are often represented by block diagrams. A block diagram is a
graphical structure containing (1) directed lines representing the (one-directional) flow
of time-domain signals within the controller, (2) time-domain signal processing blocks
(e.g., integrator, differentiator, lead, lag, gain, adder, inverter, and multiplier), (3)
external input points from which the controller receives signals (e.g., the reference
signal and the plant output that is externally fed back from the plant to the controller),
and (4) output point(s) for the controller, conventionally called the control variable).
Some signal processing blocks have multiple inputs (e.g., an adder), but they all have
exactly one output. Because of this restriction, block diagrams for controllers usually
contain fakeoff points that enable the output of a block to be disseminated to more than
one other point in the block diagram. Many blocks used in controllers (e.g., gain,
lead, lag, delay) possess numerical parameters. The determination of these values is
called tuning. Block diagrams sometimes also contain internal feedback (internal
loops in the controller) or feedback of the controller output directly into the controller.

The design (synthesis) of a controller entails specification of both the topology and
parameter values (tuning) for the block diagram of the controller such that the
controller satisfies user-specified high-level design requirements. Specifically, the
design process for a controller entails making decisions concerning the total number of
signal processing blocks to be employed in the controller, the type of each block (e.g.,
integrator, differentiator, lead, lag, gain, adder, inverter, and multiplier), the
interconnections between the inputs and outputs of each signal processing block and
between the controller’s external input and external output points, and the values of all
required numerical parameters for the signal processing blocks.

Genetic programming has recently been used to create a block diagram for
satisfactory controller for a particular two-lag plant and a particular three-lag plant
(Koza, Keane, Yu, Bennett, and Mydlowec 2000). Both of these genetically evolved
controllers outperformed the controllers designed by experts in the field of control
using - the criteria originally specified by the experts. However, both of these
controllers were for plants having lags with a particular value of the time constant, 7.

A mathematical formula containing one or more free variables is "general" in the
sense that it provides a solution to an entire category of problems. For example, the
familiar formula for solving a quadratic equation contains free variables representing
the coefficients of the equation. The question arises as to whether it is possible to
evolve a controller for an entire category of plants — instead of one particular plant.
In other words, is it possible to design a "generalized" controller containing one or
more free variables. The fact that genetic programming permits the evolution of
mathematical expressions containing free variables suggests that this might be



