Splitting an Operator

An Algebraic Modularity Result
and Its Application to Logic Programming

Joost Vennekens, David Gilis, and Marc Denecker

Department of Computer Science, K.U. Leuven
Celestijnenlaan 200A
B-3001 Leuven, Belgium

Abstract. It is well known that, under certain conditions, it is possi-
ble to split logic programs under stable model semantics, i.e. to divide
such a program into a number of different “levels”, such that the models
of the entire program can be constructed by incrementally constructing
models for each level. Similar results exist for other non-monotonic for-
malisms, such as auto-epistemic logic and default logic. In this work, we
present a general, algebraic splitting theory for programs/theories un-
der a fixpoint semantics. Together with the framework of approximation
theory, a general fixpoint theory for arbitrary operators, this gives us a
uniform and powerful way of deriving splitting results for each logic with
a fixpoint semantics. We demonstrate the usefulness of these results, by
generalizing Lifschitz and Turner’s splitting theorem to other semantics
for (non-disjunctive) logic programs.

1 Introduction

An important aspect of human reasoning is that it is often incremental in nature.
When dealing with a complex domain, we tend to initially restrict ourselves to
a small subset of all relevant concepts. Once these “basic” concepts have been
figured out, we then build another, more “advanced”, layer of concepts on this
knowledge. A quite illustrative example of this can be found in most textbooks
on computer networking. These typically present a seven-layered model of the
way in which computers communicate. First, in the so-called physical layer,
there is only talk of hardware and concepts such as wires, cables and electronic
pulses. Once these low-level issues have been dealt with, the resulting knowledge
becomes a fized base, upon which a new layer, the data-link layer, is built.
This no longer considers wires and cables and so on, but rather talks about
packages of information travelling from one computer to another. Once again,
after the workings of this layer have been figured out, this information is taken
“for granted” and becomes part of the foundation upon which a new layer is
built. This process continues all the way up to a seventh layer, the application
layer, and together all of these layers describe the operation of the entire system.

In this paper, we investigate a formal equivalent of this method. More specifi-
cally, we address the question of whether a formal theory in some non-monotonic

B. Demoen and V. Lifschitz (Eds.): ICLP 2004, LNCS 3132, pp. 195-209, 2004.
© Springer-Verlag Berlin Heidelberg 2004



196 Joost Vennekens, David Gilis, and Marc Denecker

language can be split into a number of different levels or strata, such that the
formal semantics of the entire theory can be constructed by succesively con-
structing the semantics of the various strata. (We use the terms “stratification”
and “splitting” interchangeably to denote a division into a number of different
levels. This is a more general use of both these terms, than in literature such as
[Gel87].) Such stratifications are interesting from both a practical and a more
theoretical, knowledge representational point of view. For instance, computing
models of a stratified version of a theory is often significantly faster than comput-
ing models of the original theory. Furthermore, in order to be able to build and
maintain large knowledge bases, it is crucial to know which parts of a theory can
be analysed or constructed independently and, conversely, whether combining
several correct theories will have any unexpected side-effects.

It is therefore not surprising that this issue has already been intensively
studied. Indeed, splitting results have been proven for auto-epistemic logic under
the semantics of expansions [GP92,NR94| default logic under the semantics of
extensions [Tur96] and various kinds of logic programs under the stable model
semantics [LT94,EL04]. In all of these works, stratification is seen as a syntactical
property of a theory in a certain language under a certain formal semantics.

In this work, we take a different approach to studying this topic. The se-
mantics of several (non-monotonic) logics can be expressed through fixpoint
characterizations in some lattice of semantic structures. In such a semantics, the
meaning of a theory is described by an operator, which revises proposed “states
of affairs”. The models of a theory are those states which no longer have to be
revised. Knowing such a revision operator for a theory, should suffice to know
whether it is stratifiable: this will be the case if no higher levels are ever used
to revise the state of affairs for lower-level concepts. This motivates us to study
the stratification of these revision operators themselves. As such, we are able
to develop a general theory of stratification at an abstract, algebraic level and
apply its results to each formalism which has a fixpoint semantics.

This approach is especially powerful when combined with the framework of
approzimation theory, a general fixpoint theory for arbitrary operators, which
has already proved highly useful in the study of non-monotonic reasoning. It
naturally captures, for instance, (most of) the common semantics of logic pro-
gramming [DMTO00], auto-epistemic logic [DMT03] and default logic [DMT03].
As such, studying stratification within this framework, allows our abstract re-
sults to be directly and easily applicable to logic programming, auto-epistemic
logic and default logic.

Studying stratification at this more semantical level has three distinct ad-
vantages. First of all, it avoids duplication of effort, as the same algebraic theory
takes care of stratification in logic programming, auto-epistemic logic, default
logic and indeed any logic with a fixpoint semantics. Secondly, our results can
be used to easily extend existing results to other (fixpoint) semantics of the
aforementioned languages. Finally, our work also offers greater insight into the
general principles underlying various known stratification results, as we are able
to study this issue in itself, free of being restricted to a particular syntax or
semantics.



