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ABSTRACT 

During the past decade, the small non-coding RNAs have rapidly emerged as important contributors 

to gene regulation. To achieve their biological roles, these small RNAs require a unique class of 

proteins called the Argonautes. The discovery and our comprehension of this highly conserved 

protein family is closely linked to the study of RNA-based gene silencing mechanisms. With their 

functional domains, the Argonaute proteins can bind small non-coding RNAs and control protein 

synthesis, affect messenger RNA stability and even participate in the production of a new class of 

small RNAs.  

 

INTRODUCTION   

Despite of the fact that research field on small regulatory RNAs is relatively young, it has already 

reshaped our understanding of gene regulation by revealing unexpected layers of transcriptional and 

post-transcriptional gene regulatory mechanisms. Members of a new family of proteins that are 

involved in RNA silencing mediated by small non-coding RNAs share their names with the great 

warriors from Greek mythology: the Argonautes.  

Argonaute proteins were originally described as being important for plant development 1, 2 

and germline stem-cell division in Drosophila melanogaster 3. However, the association of these 

proteins with small non-coding RNAs, such as in RNA interference (RNAi) and microRNA 

(miRNA) pathways, has generated significant interest in their study and it has since become 

apparent that Argonaute proteins are essential for these gene regulatory mechanisms.  However, 

their exact role remained enigmatic for a long time. Many studies have so far attributed roles for 

Argonaute proteins in maintaining genome integrity, in controlling protein synthesis, RNA stability 

and the production of a specific set of small non-coding RNAs. 
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This Review will introduce the origins and the evolution of this family, focus on what is 

known about the signature and functional domains of Argonaute proteins and describes recent data 

addressing their functions in animals. Argonaute proteins also have essential roles in yeast and 

plants in which, among other functions, they are associated with chromosome maintenance and the 

formation of heterochromatin; however, these topics have been reviewed elsewhere 4,5, 6 and will 

not be discussed here. 

 

Evolution and diversity of Argonautes  

The Argonaute proteins are classified into three paralogous groups: Argonaute-like, that are more 

similar to the Arabidopsis thaliana AGO1, Piwi-like that are more closely related to the Drosophila 

melanogaster PIWI and the recently identified Caenorhabditis elegans-specific group 3 Argonautes 

7 (Box 1). Argonaute-like and Piwi-like proteins are present in bacteria, archaea and eukaryotes, 

which implies that both types of proteins have an ancient origin (reviewed in Ref. 8). However, the 

number of Argonaute genes present in different species varies.  For instance, there are eight 

Argonaute genes in the human (Four Argonaute-like and four Piwi-like), five in fruit fly genome 

(two Argonaute-like and three Piwi-like), 10 Argonaute-like in A. thaliana, only one Argonaute-like 

in Schizosaccharomyces pombe and at least 26 Argonaute in C. elegans (five Argonaute-like, three 

Piwi-like and eighteen group 3 Argonautes) (Table 1). In some organisms, such as Trypanosoma 

cruzi and Leishmania major, the Argonaute proteins may have lost the PAZ domain and retain only 

a PIWI domain (see below); however, these species are either not sensitive to double-stranded 

(ds)RNA molecules or these proteins are dispensable for RNAi  9.  

Detailed phylogenetic analysis of the Argonaute-like and Piwi-like proteins strongly implies 

that the last common ancestor of eukaryotes encoded both types of protein. However, lineage-

specific loss of either of the paralogues might have occurred over evolution, as plants only encode 
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Argonaute-like proteins and, for instance, the Amoebozoa phylum members have retained only the 

Piwi-like paralogues. Animals carry representatives of both proteins in their genomes.  

Remarkably, Argonautes proteins have undergone a high degree of gene duplication, 

especially in both plants and metazoans, followed by diversification in their function. The champion 

of this expansion is C. elegans, with 26 distinct Argonaute proteins (see below). On the other hand, 

there are examples of simplification and loss of Argonaute proteins in taxonomically diverged 

organisms. For instance, S. pombe has retained one Argonaute-like protein, which functions in 

diverse processes such as heterochromatin silencing and post-transcriptional gene silencing (PTGS) 

10-12. Furthermore, S. cerevisiae and some parasitic organisms such as T. cruzi and L. major may 

have independently lost their Argonautes together with the entire RNAi machinery 9.  

Comparative in silico analysis of the evolution of the key components of the RNAi 

machinery implies that the last common ancestor of eukaryotes already had at least two distinct 

RNAi mechanisms, based on the prediction that this organism contained at least one Argonaute-like 

and one Piwi-like protein. Piwi-like protein most likely, might have localized to the nucleus and 

been an effector of mechanisms related to transcriptional silencing such as transposon silencing, 

silencing of repetitive elements that result in heterochromatization, whereas the Argonaute-like 

paralog was responsible for the regulation of translation by targeting mRNAs in the cytoplasm, as 

these two types of silencing phenomenon are present in all organisms that can use dsRNA to 

regulate gene expression 8. Gene duplication of Argonautes probably resulted in the diversification 

of RNAi-like mechanism in which the effector proteins probably specialized to bind distinct small 

RNA species and/or interact with diverse protein complexes with different regulatory potentials.  

Biochemical analysis of eubacterial and archean Argonaute proteins indicates that the 

original function of this protein family was similar to the function of members of the ribonuclease 

(RNase) H family of endonucleases; an endonuclease that uses DNA as a template to target RNA 
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molecules 13, 14. However, over evolution Argonautes specialized to use single-stranded (ss)RNA 

rather than DNA as a template to target RNA. In animals, some Argonautes have lost their catalytic 

activity, and participate in a gene regulation mechanism that does not require RNA cleavage (see 

catalysis-independent Argonaute activity section below).  

  

Functional domains of Argonautes  

Argonautes consist of four distinct domains: the N-terminal, PAZ, Mid and PIWI domain (Figure 1). 

Eukaryotic Argonaute proteins that function in gene regulatory mechanisms mediated by small 

RNAs always contain these domains.  

The long-awaited explanation for the function of Argonaute proteins started to be resolved 

with the help of crystallographic studies.  These studies revealed that the PIWI domain of 

Argonautes folds in a similar manner to the catalytic domain of RNase H enzyme family, which 

strongly suggested that Argonautes function as endonucleases 15. Interestingly, the eubacterial 

Aquifex aeolicus and the archean Pyrococcus furiosus Argonaute proteins can bind single-stranded 

(ss)DNA 13, 14 and A. aeolicus efficiently cleaves DNA–RNA hybrids, which indeed implies an 

RNase H-like role for the ancient Argonautes 13, 14. 

The PAZ domain. The PAZ domain is only found in Dicer and Argonaute proteins, two 

protein families with key roles in RNAi mechanisms. The PAZ domain consists of two subdomains, 

one of which displays OB-like (oligonucleotide-oligosaccharide binding) folding, which indicates 

that the PAZ motif might bind single-stranded nucleic acids 16, 17, 18. Crystallography combined with 

biochemical approaches indeed proved that the PAZ domain binds to ssRNAs with low affinity in a 

sequence-independent manner 19, 20.  

The remarkable nature of the PAZ domain is that it can recognize the 3´ ends of ssRNAs. 

Both miRNAs and distinct types of small interfering (si)RNAs are trimmed by the sequential action 
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of RNase III enzymes (Drosha and Dicer in animals or Dicer only in yeast and plants), both of 

which characteristically leave two 3´overhangs on the processed product. Therefore, the PAZ 

domain could initially distinguished these small regulatory RNAs from degraded RNAs derived 

from non-related pathways by binding to their characteristic 3’ overhangs. 

The PIWI domain. The structure of the full-length archean and eubacterial Argonautes and 

the archean Archeoglobus fulgidus Piwi protein, which lacks the N-terminal domain and the PAZ 

domain, revealed that the PIWI domain has an RNase H-like fold 13-15, 21. As mentioned above, 

RNase H-like enzymes cleave RNA using a DNA template and this catalysis requires a conserved 

Asp-Asp-Glu/Asp motif in the catalytic centre and binding of two divalent metal ions by the 

ribonuclease. Cleavage-competent Argonaute proteins have a slightly more degenerate catalytic 

centre (Asp-Asp-Asp/Glu/His/Lys) and they require the binding of a divalent cation for activity 

(reviewed in Ref. 22). Their cleavage products contain 3´-OH and 5´-phosphate, which is also a 

characteristic feature of RNase H-like processing 23, 24.  

Additional important insights into target recognition and activity were gleaned from 

structural studies in which A. fulgidus Piwi and the eubacterial A. aeolicus Argonaute were 

crystallized in the presence of either ssRNA or siRNA-like molecules 14, 25. These studies 

reconfirmed earlier works indicating that the 5´ phosphate of an siRNA or a miRNA is a key 

element of their functionality 26. The 5´ phosphate is anchored, via a divalent cation, at the interface 

between the PIWI and the Mid domain 14, 25. Apart from its function to anchor the 5’ phosphate, the 

Mid domain of metazoan Argonautes that function in the miRNA pathway contain a portion, known 

as the MC domain, that has striking homology to the cap-binding motif of the translation initiator 

factor eIF4E. Indeed, the MC domain can bind to the cap and it is required for efficient regulation of 

translation 27. The above-mentioned structural studies show that the first nucleotide of the guiding 

strand of a small RNA is separated from the targeted RNA. This is in agreement with reports that 
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imply that the very 5´ end nucleotide of siRNAs and miRNAs is not necessarily involved in the 

recognition of the substrate 28-30. Moreover, the results of structural studies explain why the small 

RNA-mediated cleavage of the target RNA always occurs at a fixed place (as established by 

previous biochemical studies), as the catalytic motif of the ribonuclease is positioned in front of the 

scissile phosphate between the 10th and the 11th nucleotide of the guiding strand (counting from the 

anchored 5´ end) 29, 31. 

A study in which recombinant proteins were used showed that the minimal RNA-induced 

silencing complex (RISC) contains a cleavage-competent Argonaute or the PIWI domain of an 

Argonaute plus a bound small RNA 32. The endonuclease activity of the Argonaute and Piwi 

proteins in fission yeast, fungus, plants, flies and mammals is essential for the function of RISC. 

Argonautes have been shown to participate in the maturation of siRNAs by eliminating the non-

active siRNA strand 33-35 and initiating sequence-specific cleavage of the target RNAs 36.  In 

addition, the cleavage activity of Piwi proteins is most likely required for the maturation of repeat-

associated small interfering (rasi)RNAs and Piwi-interacting (pi)RNAs in flies and mammals 37, 38. 

The presence of an intact PIWI-domain catalytic centre, however, only partially explains the 

cleavage activity of the Argonautes. For instance, human Ago3 is incapable of mediating cleavage if 

it is charged with miRNAs, despite it having a canonical active site, which implies a requirement for 

binding to specific, as-yet-undiscovered, small RNA(s) or additional co-factors 39-41.  

Catalysis-independent Argonaute activity. The catalytic activity of the PIWI domain is 

clearly important for some Argonaute proteins, but other members of this family, such as human 

Ago1, Ago4, one of the human Piwi HIWI2/PIWIL4, and most of the group 3 Argonautes of C. 

elegans, have diverged in their catalytic motif to a degree that probably impairs their endonuclease 

activity 22. Importantly, not all known small-RNA-mediated gene regulation requires the catalytic 

activity of the Argonautes. For instance, the majority of miRNA-mediated gene repression in 
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animals, in contrast to plant miRNAs, does not involve sequence-specific cleavage (called slicing 

activity), even if the miRNAs are incorporated into Argonautes that maintain the catalytic activity 

(slicing-competent Argonautes) — this is because miRNAs share only restricted complementarity to 

their target RNAs and this is insufficient for sequence-specific cleavage.  

Argonautes are involved in distinct steps of small RNA maturation and small RNA-mediated 

gene repression that very likely require interactions with diverse protein complexes. Indeed, the 

comprehensive cytoplasmic human Ago1 and Ago2 proteomes, affinity purified with overexpressed 

tagged proteins, have been recently reported 42. This study showed that human Ago1/2 interact a 

variety of proteins in three distinct sized complexes. The majority of these proteins are RNA binding 

proteins that are involved in distinct steps of RNA processing, maturation, transport and the 

regulation of RNA stability and translation. Interestingly, some of the interactors have function in 

other small RNAs such as small nuclear (sn)RNAs and small nucleolar (sno)RNAs biogenesis. 

Some of these interactions are likely to be mediated by RNAs, but some proteins may bind directly 

to Argonautes or associate with them via other protein interactors 42. It has already been established 

that Argonautes can directly bind to other proteins. Both Dicer and Argonaute proteins participate in 

the selection of the active strand of siRNAs and miRNAs, and it was demonstrated that the PIWI 

box, a motif located within the PIWI domain, of human Argonautes binds to one of the RNase III 

domains of Dicer 43. The PIWI domain of the fly AGO1 directly interacts with GW182, a protein 

characteristic of the cytoplasmic processing body (P-body). GW182 has also a role in the miRNA-

mediated gene regulation and which could function downstream of AGO1 in flies 44. This latest 

interaction represents a unique way in which Argonautes interact with other proteins. The part of the 

PIWI domain that accommodate the 5´ phosphate of the guiding strand of an siRNA also bind to an 

at least 22 long peptide, called the Ago hook, originally recognized in the S. pombe Argonaute 

interacting protein Tas3 45. This peptide contains WG/GW repeats and the tryptophan residues are 
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absolutely required for the interaction. Interestingly, this type of amino acid repeats are found in 

many unrelated Argonaute interactor proteins such as the large subunit of plant Polymerase IV 

(NRPD1b), the orthologues of the GW182 protein family in metazoan and the yeast Tas3 45, 46. In 

NRPD1b and GW182 proteins, the GW/WG motifs are found in many copies and they may provide 

a scaffolding platform for binding multiple Argonautes in order to assembly the regulatory complex. 

Since in vitro experiments showed that the Ago hook peptide can relieve miRNA-mediated gene 

repression in fly extract, despite that the PIWI domain is able to mutually bind to either the small 

RNA or the peptide, it is very likely that this motif also participate in the small RNA-mediated gene 

regulation 45. 

 

Argonautes in RNA silencing pathways 

Into the cell, small non-coding RNA species bound by Argonaute proteins are either exogenously 

supplied by scientists or viruses or endogenously produced by various molecular processes (Box 2). 

Once processed, the loading of small RNAs into the Argonaute proteins requires various protein 

complexes; for two of the most studied pathways, the RNAi and miRNA pathways, and this 

assembly process is shown in Figure 2. The selection of the strand to remain bound to the Argonaute 

is guided by the thermodynamic stability of the 5’ ends of the small RNA, in a process referred to as 

the asymmetry rule. In general, the RNA molecule from the double-stranded precursor that has the 

less stable 5’ end will be incorporated into the RISC complex, whereas the other strand will be 

destroyed 47, 48.  

The processing and loading of regulatory small RNAs into distinct Argonaute complexes 

show specialization in many organisms. For instance, in A. thaliana different Dicer and Argonaute 

complexes are responsible for processing and binding distinct small RNA species such as miRNAs, 

trans-acting small interfering (tasi)RNAs and repeat-associated small interfering (rasi)RNAs 
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(reviewed in Ref. 4). In flies, Dcr-1 and Loquacious are required for miRNA biogenesis 49-51, 

whereas Dcr-2 and R2D2 are responsible for the production of siRNA from long, perfectly paired 

dsRNA 52, 53. Recent studies revealed that the structure of the ‘diced’ siRNA and miRNA 

intermediate duplexes determines their partitioning into Ago1 or/and Ago2 complexes in D. 

melanogaster 54, 55, and influences the selection of RDE-1, ALG-1 or ALG-2 proteins in C. elegans 

(56, Jannot G., Boisvert M.E., Banville I.H. and M.J.S., unpublished observations).  

In the siRNA pathway, the binding orientation of a heterodimer of Dcr-2 and R2D2 on the 

siRNA duplex molecule is important for determining which one of the two siRNA strands is loaded 

into the Argonaute complex 53, 57. R2D2 will bind to the more stable end, whereas Dcr-2 is recruited 

to the less stable end (Figure 2). It is proposed that this complex (called the RISC-loading complex, 

or RLC) will recruit an Argonaute complex, referred to as the holo-RISC, by an interaction between 

Dcr-2 and Ago2 58. Once Ago2 is associated with the siRNA duplex, the Argonaute will cleave the 

non-active siRNA strand (the passenger strand) and thus, initiate unwinding and release to generate 

the active RISC complex of Argonaute and the small RNA 34. Although the cellular factor that 

confers unwinding activity has not yet been uncovered, biochemical studies have clearly 

demonstrated the essential contribution of Argonaute in this process 53, 59.  

Argonaute proteins and small regulatory RNAs in nematodes. The discovery of the first 

Argonaute gene associated with the RNAi response, rde-1 60, led to the subsequent discovery of the 

existence of 26 Argonaute-family members in C. elegans (Box 1).  Seminal work to uncover the 

function of these genes led to the discovery of ALG-1 and ALG-2, which are essential for the 

miRNA pathway 61. Their loss-of-function generates problems in the timing of the animal 

development also called heterochronic phenotypes — hallmarks of miRNA defects in C. elegans 62, 

63. An exhaustive study of the remaining members of the Argonaute family in the nematode 

demonstrates the importance of these genes in various RNA silencing pathways (Table 1; Ref. 7). 
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Whereas RDE-1 is required only for RNAi mediated by exogenously supplied dsRNA triggers 

(exogenous RNAi pathway) and ERGO-1, CSR-1, are essential for RNAi initiated by dsRNA 

molecules generated within the cell (endogenous RNAi pathway), others Argonautes function in 

both RNAi pathways 7.  

Interestingly, SAGO-1, SAGO-2, PPW-1, PPW-2, C16C10.3 and F58G1.1, the Argonaute 

proteins that are important for both exogenous and endogenous RNAi, bind another class of small 

RNAs: the secondary siRNAs that are a distinct class of siRNAs (Figure 3). The production of these 

RNA species is initiated by the first Argonaute (RDE-1 and most likely ERGO-1 and CSR-1)–

siRNA complex, which recognizes the targeted mRNA and induces the synthesis of an antisense 

strand by RNA-dependent RNA polymerases (RdRPs) that thus will lead to their production (Figure 

3). The sequential requirement of Argonaute proteins seems to be associated with their capacity for 

RNA cleavage. Sequence alignment in the three regions of Argonaute proteins that have similarity 

to the catalytic centre of RNase H indicates that the Argonaute proteins associated with the trigger-

derived siRNAs contains the specific residues for cleavage, whereas others associated with the 

secondary siRNAs lack these residues 7. Interestingly, it has been recently observed that the 

amplified siRNAs in C. elegans have two or three phosphate residues at their 5’ ends 64, 65, whereas 

Dicer-derived siRNAs carry a single phosphate 26, 31. Therefore, the specific binding of an 

Argonaute protein to either primary or secondary siRNAs may be guided by the number of 

phosphates found at the 5’ ends of small RNAs that reflect the machinery that generate these RNA 

species. 

 

Biological outcomes  

Seminal studies in C. elegans and plants have uncovered the important role carried out by 

Argonaute proteins in RNA silencing pathways. At the same time, studies in fly and mammalian 
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systems have increased our understanding of the molecular roles of the Argonaute proteins in these 

biological processes.  

Argonautes interfere with translation. One of the most extensively studied functions of 

Argonautes is their role in regulating translation that is in association with miRNA-mediated gene 

regulation. For a long time, Argonautes were believed to only be involved in translational 

repression; however, a recent study has revealed that Argonautes can be a part of a protein complex 

that enhances the translation of an AU-rich-element-regulated transcript in serum-starved cells 66. In 

the past two years, another dogma — namely, that miRNAs regulate translation at the elongation 

step without influencing the stability of the target RNA — has been challenged 67.  

In fact, it seems that Argonautes, in a complex with miRNAs, can influence translation in 

many distinct ways. Increasing in vitro and in vivo evidence suggests that Argonautes might inhibit 

the translation of miRNA-targeted RNAs at the initiation step. The studies supporting this 

mechanism showed that the great majority of the miRNA-mediated gene regulation requires the 

presence of the canonical cap and poly(A) tail on the targeted RNA 68, 69. Furthermore, tethering 

translation initiation factors on the miRNA-targeted RNA abrogates miRNA function and certain 

internal ribosome entry site (IRES) elements render the RNA resistant to miRNA-mediated 

repression 69, 70.  

According to recent studies, translation initiation can be prevented in at least two distinct 

ways. In cell-free extract from fly, miRNA inhibits the formation of the translationally active 80S 

ribosome by inhibiting the assembly of the 43S initiation complex 71. Argonautes can bind to the cap 

potentially through its MC domain, and mutations in this cap-binding domain impair their function 

in translation repression 27. Therefore, competition between Argonaute proteins and translational 

initiation factors for cap binding might explain the inhibition of the assembly of the 43S complex 27. 

In addition, miRNA-mediated repression of translation requires eIF6, the anti-dissociation factor 



 13 

that prevents the assembly of the 80S ribosomes 72. As eIF6 binds to the 60S ribosomal subunit, this 

type of inhibition of translational initiation is clearly distinct from inhibition of the assembly of the 

43S initiation complex on the cap.  

Several lines of evidence also support the notion that miRNAs in complex with Argonautes 

could alternatively inhibit translation after initiation. miRNAs and their targets have been shown to 

co-sediment with actively translating polyribosomes, which implies that repression occurs after 

initiation and might result in ribosomes falling off the polypeptide chain, or the synthesized 

polypeptide chain being rapidly degraded 67, 73-77.  

It might seem strange that miRNA-loaded Argonaute proteins can inhibit translation at 

different stages, but we think it is plausible that these proteins interfere with translation in diverse 

ways, providing a fail-safe mechanism to reduce or abolish harmful protein expression. But the 

question remains: how do Argonaute proteins mediate this process? A clever set of experiments has 

demonstrated that, in the absence of miRNAs, tethering functional human Argonautes to the target 

RNA can induce gene silencing 78. These data indicate that the small RNA molecules in the complex 

function only as a sequence-specific tag to deposit the machinery to the mRNA. It then becomes 

important to characterize the proteins that associate with Argonautes and/or miRNA-targeted RNAs 

to mediate the silencing.  

The cap-binding capacity of the Argonautes could explain the inhibition of the assembly of 

the 43S complex and it also clarifies why increasing the number of miRNA-binding sites on a target 

elicit more prominent regulation, as a higher number of Argonaute proteins associated with the 

target result in a more dramatic cap-binding potential 27, 28. However, it is very likely that other types 

of translational interference require additional protein interactors. For instance, in the fly, tethering 

GW182, a protein that directly interacts with fly AGO1, to mRNA in an AGO1 knockdown 
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background recapitulates translational repression. This observation indicates that other events, 

downstream of Argonautes, might regulate protein synthesis 44. 

On the other hand, it has recently been observed that miRNA-mediated gene regulation 

could be relieved in specific biological conditions. Under specific stress, miRNA-mediated gene 

repression could be reversed by HuR, a protein that recognizes AU-rich regulatory elements on the 

miRNA-targeted untranslated region (UTR) 79, which indicates that miRNA-mediated gene 

regulation is not irreversible. 

Argonautes and RNA stability. Argonaute proteins complexed with miRNAs can alter the 

stability of targeted RNA without initiating sequence-specific cleavage, especially in metazoans, in 

which the complementarity of most miRNAs to their target is insufficient to induce endonuclease 

activity 80-84. There is evidence that this RNA destabilization is independent of translation and 

requires the canonical cap and poly(A) tail, which suggests that the RNA degradation is executed by 

the machinery that governs the 5´→-3´ decay after deadenylation-dependent decapping 81, 85. A 

comprehensive study in D. melanogaster has shown that the miRNA-mediated RNA decay requires 

GW182, which recruits the CCR4–NOT deadenylase and DCP1–DCP2 decapping complexes, and 

that these complexes are responsible for the decay of the miRNA-targeted transcripts 44.  

The question is whether RNA degradation is a consequence of translational repression or 

whether they are two independent mechanisms. Increasing evidence indicates that miRNA-mediated 

target RNA decay and the repression of translation can be uncoupled. For instance, not every 

miRNA-targeted RNA shows destabilization at the steady-state level 44, 68-70, 77, 79. Furthermore, it 

was shown that inhibition of the pathway that degrades the miRNA-targeted transcripts generated 

more stable RNA but it did not relieve translational repression, which strongly supports the idea that 

the two events are independent of each other 44. It was demonstrated in fly that the level of RNA 

decay could vary in individual miRNA–target-RNA interactions, which suggests that the interaction 
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between a miRNA-protein associated complex and a specific mRNA can regulates the level of 

decay 44. Factors that are suggested to be important are those responsible for regulating the stability 

and the turnover rate of the targeted RNA and/or the miRNA–target complex 44, 86. It is very likely 

that additional proteins that are either associated with the core Argonaute–miRNA complex or 

bound to the targeted RNA could determine the degree of stability of the translationally repressed 

miRNA targets. Indeed, AU-rich element-binding motifs and proteins have already been 

demonstrated to interfere with miRNA-mediated gene regulation 66, 79, 87. 

Piwi-like proteins and germ line maintenance. Piwi-like proteins, which are found in 

metazoans, are important for the production and function of germline stem cells 88, 89, 3, 7, 90-92. These 

proteins have recently been found to be associated with a new class of small RNAs called the Piwi-

interacting (pi)RNAs, which are specifically expressed in germ cells 93-97 and required to silence 

mobile elements and thereby maintain genome integrity 38, 98-100. In contrast to other Argonaute-

associated small RNAs, piRNAs are slightly longer (24–30 nucleotides long) and their production 

does not require the RNase III gene-family members Drosha and Dicer 98, 100. The generation of 

piRNAs relies instead on the endonuclease activity of Piwi-like proteins (Box 2). It has recently 

been observed in D. melanogaster that initial cleavage of an Ago3–piRNA precursor by a complex 

of Aubergine and piRNA induces the exponential production of piRNAs 37, 38. It is still not known 

how the primary source of piRNAs is generated or how the 3´ end of a piRNA is defined, although 

recent genetic data from flies suggest that additional endonucleases and exonucleases can participate 

in these events 101. 

Recent data obtained by Lin, Elgin and colleagues with the fly system has brought new 

insights on Piwi-like proteins functions 102. They observed that the N-terminal domain of 

Drosophila PIWI, can interact with heterochromatin protein 1a (HP1a) dimer, a non histone 

chromosomal protein that plays important roles in chromosomal biology and gene silencing 
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(reviewed in ref. 103). HP1a and PIWI colocalize in pericentric heterochromatin regions and this 

cellular localization appears to be RNA dependent. More importantly, they also demonstrated that 

the interaction with HP1a is important for PIWI epigenetic function since mutations into the 

interaction domain that abrogate HP1a binding fail to rescue silencing in PIWI-depleted animals. 

This new observation supports for the first time that Piwi-like proteins in the metazoans may be 

implicated in heterochromatin formation in a similar manner as Ago1 in fission yeast where the 

protein targets histone methylation to create binding sites for the HP1 homolog Swi6 11,104. 

Additionally, Drosophila PIWI protein can also promote production of piRNAs by increasing 

transcription of piRNAs loci located in subtelomeric regions 105. Based on these two new studies, we 

can envision that Piwi-like proteins will contribute to the initial production of piRNAs and then bind 

to these newly synthesized small RNAs in order to silence specific chromosomal regions (i.e. 

pericentromeric regions) through the interaction with HP1. These recent works start to reveal how 

Piwi-like proteins can be implicated in germ line maintenance by regulating chromosomal states of 

stem cells genome. 

 

CONCLUSIONS AND FUTURE DIRECTIONS  

Since the discovery of the first Argonaute gene in Arabidopsis thaliana only ten years ago, members 

of this family have rapidly emerged as key components of new gene regulation pathways that 

involve small non-coding RNAs. A significant number of recent studies using a variety of biological 

systems have started to reveal the impressive biological capacities of the Argonaute protein family. 

Biochemical studies of Argonaute proteins from different species have provided a better 

understanding of the molecular features that define the enzymatic activity of the PIWI domain, and 

the capacity of the PAZ domain and Mid domain to interact with small RNA molecules and proteins 

involved in translation. Model organisms such as A. thaliana, C. elegans and D. melanogaster have 
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helped to uncover the functional diversity of the roles of Argonaute proteins in many developmental 

cues as well as during cell proliferation and differentiation. Studies performed with model 

organisms and mammalian cell culture systems have started to shed light on how Argonaute 

proteins, in association with small non-coding RNA pathways, can control protein production and 

the stability of targeted mRNAs and even directly contribute to the production of small RNAs.   

In the next years, the real challenge will be to determine how Argonaute proteins regulate 

gene function. For this, it will become essential to discover their biological partners, understand 

their tissue and developmental specificities and their capacity to precisely interact with various small 

RNA species. It will also be interesting to identify molecular features such as post-translational 

modifications that modulate the Argonaute proteins for such an extreme functional diversification 

found in metazoans and especially in the nematode C. elegans.  
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Display items 

Boxes 

Box 1 | The origin of the Argonautes  

The term Argonaute was originally used by Bohmert and collaborators to describe a mutant of 

Arabidopsis thaliana (AGO1) in which the morphology of the leaves resembled a small squid: the 
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‘greater argonaut’ or Argonauta argo 2. Sequence analysis of a new gene required for plant 

development, ZWILLE, has highlighted the presence of a highly conserved 70-amino-acid sequence 

that is found in AGO1 as well as in certain proteins in nematodes and humans; the PAZ domain 1.  

Genetic studies in fruit fly identified piwi (for P-element-induced wimpy testis), a gene 

essential for germline stem cell division 3 and the piwi box, a 40-amino-acid sequence located in the 

C terminus of the piwi protein, in the A. thaliana proteins AGO1 and ZWILLE, in one human protein 

HIWI and in many Caenorhabditis elegans proteins 91. This study led to the first characterization of 

the PIWI domain. In 2000, the PIWI domain was redefined as a 300-amino-acid region and 

demonstrated to be present in prokaryotes 106.  This same study also identified a region of similarity 

between the central portion of the fly Piwi protein, which is common to all Argonautes, and the 

carpel factory protein from A. thaliana, an important gene for plant development 107. This 110-

amino-acid region was designated the PAZ domain, after three proteins sharing this domain: PIWI, 

AGO1 and ZWILLE. 

The figure shows the phylogenetic relationship of the Argonaute proteins. The Argonaute-

like group found in plants, animals and fungi are indicated in black. The Argonaute clade in green 

represents the Piwi-like group. The C. elegans-specific group 3 Argonaute proteins are indicated in 

red. C. elegans M03D4.6 and C06A1.4 are most likely pseudogenes. Argonaute genes are also 

found in prokaryotes (not shown). Ce, Caenorhabditis elegans; At, Arabidopsis thaliana; Hs, Homo 

sapiens; and Sp, Schizosaccharomyces pombe. Figure modified with permission from Ref. 7.  

 

Box 2 | Diverse sources of small RNA molecules 

Various viruses and experimental methods can exogenously introduce into the cell micro (mi)RNAs, 

small interfering (si)RNAs or double-stranded (ds)RNA molecules that will be processed into small 

RNAs by Dicer, an RNAse III-type enzyme. Endogenously, small RNAs can be generated by 
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different sets of enzymatic activities. As demonstrated in Drosophila, Piwi interacting (pi)RNAs are 

produced by a sequential action of  two Piwi-like proteins. The Ago3 protein bound mainly piRNAs 

derived from sense strand of retrotransposons while piRNAs derive from antisense strand is 

associated to Aubergine (Aub) protein. Interestingly, it has been observed that the first 10 

nucleotides of Ago3-interacting piRNAs can be complementary to the first 10 nucleotides of 

Aubergine-interacting piRNAs. In this model, called the “ping-pong” model 37, 38, the cleavage 

induces by the Ago3-piRNAs complex specifies the 5’ ends of Aubergine-associated piRNAs. 

Therefore, the Aubergine-piRNAs complex can then produce the 5’ ends of Ago3-associated 

piRNAs. Subsequently, a methyl group is added to their 3’-ends (gray circle)108 by a 

methyltransferase called Pimet/DmHen1 109, 110. Genes encoding miRNAs are first transcribed 

mainly by RNA polymerase type II 111 to produce pri-miRNA (few miRNAs have been reported to 

be products of RNA polymerase type III 112). After being trimmed by the RNase III Drosha complex 

113 or processed by Dicer in plants (or, in some cases, intronic miRNAs (miRtrons) in flies and 

nematodes bypass Drosha 114, 115), the pre-miRNA is exported into the cytoplasm through exportin-5 

116 to then be processed by the Dicer complex 61, 117, 118. Endogenously, siRNAs originated from bi-

directional transcription of specific chromosomal regions (centromeres and mating type locus) or 

aberrant production of dsRNA from repetitive regions once cleaved by Dicer. In plants and 

nematodes, a significant portion of siRNAs is also produced from the activity of RNA-dependent 

RNA polymerases or RdRPs (not shown; see Figure 3).  

 

 

Figures 

Figure 1 | Structural features of Argonaute proteins. a | Linear view of an Argonaute protein 

(human AGO2 is represented as an example). The PAZ domain (yellow), which is important for 
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small RNA association along with the PIWI domain, is situated near the N terminus of the protein 

(white). The PIWI domain (purple) of cleavage-competent Argonaute proteins contains the catalytic 

residues DDH (highlighted in red), which are essential for cleavage. The cap-binding-like domain 

(MC; green) is found within the Mid domain (light green); the region flanked by the PAZ and the 

PIWI domains. Coloured residues represent those conserved in the cap-binding factor eIF4E. b | 

Crystal structure of the Argonaute protein from Pyrococcus furiosus. The small interfering RNA 

(shown in purple) and the mRNA (in light blue) have been superimposed in the model. Active 

residues of the PIWI domain are shown in red. Reproduced with permission from Ref. 15. An 

alternative model have been produced from a structure of Aquifex aeolicus Argonaute crystallized in 

the presence of single-stranded 8 nucleotides long RNA 13, 14. 

 

Figure 2 | Assembly of the Argonaute complex. Inside the cell, a double-stranded (ds)RNA duplex 

is bound by a recognition complex that contains a Dicer-family member (DCR) and a dsRNA-

binding protein (green). In Drosophila melanogaster, the dsRNA-binding protein Loquacious forms 

the miRISC loading complex (in the microRNA pathway; right) with Dcr-1, whereas, in the RNA 

interference (RNAi) pathway, (left) Dcr-2 and R2D2 are important for recruiting the Argonaute 

protein. Once the Argonaute is associated with the small RNA duplex, the enzymatic activity 

conferred by the PIWI domain cleaves (star) only the passenger strand (black strand) of the siRNA 

duplex (RNAi pathway). Mismatches found into the miRNA duplex interfere with cleavage 

although, in some situations, the passenger strand might be cleaved if the RNA duplex is fully 

paired. RNA strand separation and incorporation into the Argonaute complex is guided by the 

strength of the base-pairing at the 5’ ends of the duplex, the ‘Asymmetry rule’ (for further 

information on the free energy of a dsRNA duplex, please refer to 119). In this example, the ’easiest’ 

5’ end to unwind is highlighted in yellow. Once unwound, the siRNA or miRNA will associate with 
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the Argonaute protein (and probably other cellular factors) to form the RISC or miRISC complex, 

respectively. However, because of their unique structure of the intermediate RNA duplex, some 

miRNAs could be sorted into both Ago1 and Ago2 complexes in D. melanogaster (pathway 

indicated by the blue arrows). 

 

Figure 3 | Roles of the Argonaute complex in miRNA and RNAi pathways. a | MicroRNA 

pathway. In animals, Argonaute associated with micro (mi)RNA binds to the 3’ untranslated region 

(3’UTR) of mRNA and prevents the production of proteins in different ways. The recruitment of 

Argonaute proteins to targeted mRNA can induce deadenylation of the polyadenylated 3’end and 

induce mRNA degradation. The Argonaute–miRNA complex can also affect: the formation of 

functional ribosomes by abrogating the recruitment of ribosomal proteins to the 5’ end of the mRNA 

and/or the production of growing polypeptides. b | RNAi pathway. Argonaute associated with small 

interfering (si)RNA forms the active RISC complex, which can induce endonucleolytic cleavage of 

targeted mRNA. In plants and C. elegans (boxed pathway), RNA-dependent RNA polymerases 

(RdRPs; yellow) contribute to the maintenance and propagation of the RNAi response throughout 

the organism. Once de novo dsRNA molecules are generated on the targeted mRNA, an unknown 

RNase III-like enzyme will produce new siRNAs called secondary siRNAs, which are then loaded 

onto a subclass of Argonaute (the secondary Argonaute), which, in turn, might induce another level 

of specific gene silencing. Alternatively, since a large population of secondary siRNAs isolated in C. 

elegans begins with the 5’ di- or triphosphate group 64, 65, these small RNA species may also be 

produced by non-processives RdRPs found in nematodes (not shown).    
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Tables 

Table 1 | Functions of Argonaute proteins in different organisms.  

Organism Molecular function References 
Neurospora crassa   
QDE2  Quelling 120, 121 
SMS-2 Meiotic silencing of unpaired DNA 122 
Schizosaccharomyces  pombe   
Ago1 Heterochromatin silencing, TGS, PTGS 11, 12, 104, 123 
Tetrahymena   
Twi1 DNA elimination 124 
Arabidopsis thaliana   
AGO1 miRNA-mediated gene silencing, tasiRNA 125, 126 
AGO4 rasiRNA, heterochromatin silencing 127 
AGO6 rasiRNA, heterochromatin silencing 128 
AGO7 tasiRNA, heteroblasty, leaf development 129 
Caenorhabditis elegans   
RDE-1 Exogenous RNAi 7, 60 
ALG-1 miRNA-mediated gene silencing, TGS 61, 130 
ALG-2 miRNA-mediated gene silencing 61 
ERGO-1 Endogenous RNAi 7 
CSR-1 Chromosome segregation and RNAi 7 
SAGO-1 Endogenous and exogenous RNAi 7 
SAGO-2 Endogenous and exogenous RNAi 7 
PPW-1 Endogenous and exogenous RNAi 7, 131 
PPW-2 Endogenous and exogenous RNAi 7 
F58G1.1 Endogenous and exogenous RNAi 7 
C16C10.3 Endogenous and exogenous RNAi 7 
PRG-1 Germline maintenance 91 
Drosophila melanogaster   
Ago1 miRNA-mediated gene silencing 59 
Ago2 RNAi 132 
Ago3  piRNA, transposon silencing 37, 38 
Piwi piRNA, transposon silencing, germline 

stem-cell maintenance, RNAi 

37, 38, 99 

Aubergine piRNA, transposon silencing, stellate 
silencing, DNA damage, RNAi 

37, 38, 98 

Zebrafish   
Ziwi piRNA, germ-cell maintenance, transposon 

silencing 

100 

Murine/Human   
Ago1 Heterochromatin silencing 133, 134 
Ago2 RNAi, miRNA-mediated gene silencing, 

heterochromatin silencing 

39, 41, 133 

Miwi (mouse) piRNA, spermatogenesis 89, 93, 96 
Mili (mouse) piRNA, spermatogenesis 88, 97 
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Riwi (rat) piRNA 95 
The table contains Argonaute and Piwi proteins that have been associated with either a small RNA 
or cellular functions. Mammals encode two further Argonaute and Piwi proteins, Arabidopsis 
thaliana has six further Argonaute proteins and C. elegans has 15 further Argonaute proteins with 
no described function(s). Relevant references are listed. 
miRNA, microRNA; piRNA, Piwi-interacting RNA; TGS, transcriptional gene silencing; PTGS, 
post-transcriptional gene silencing; rasiRNA, repeat-associated small interfering RNA; RNAi, RNA 
interference; tasiRNA, trans-acting small interfering RNA. 
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Glossary terms 

RNA induced silencing complex (RISC)  

A multicomponent gene regulatory complex, activated by a small RNA associated with Argonaute 

or Piwi proteins, that cleaves specific mRNAs that are targeted for degradation by homologous 

dsRNAs during the process of RNA interference.  

Exogenous RNAi  

A silencing response mediated by exogenous experimentally delivered double-stranded RNA 

molecules. 

 

Endogenous RNAi 

An RNAi response initiated by endogenous double-stranded RNA triggers derived from bi-

directional transcription of specific loci, or aberrant RNA generated from centromeric regions, 

transposons and transgenes. 
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RasiRNA 

Repeat-associated small interfering RNA derived from highly repetitive genomic loci. RasiRNA is 

involved in heterochromatin silencing in yeast and plants and stellate silencing in D. melanogaster. 

Metazoan rasiRNAs have similarities with piRNAs, as both classes of processing are independent of 

Dicer and Drosha. 

 

TasiRNA 

Trans-acting small interfering RNAs are plant-specific small RNAs and their maturation involves 

miRNAs. miRNAs cleave the single-stranded primary transcript, which is further amplified by 

RNA-dependent RNA polymerases followed by Dicer-mediated processing of de novo dsRNA 

molecules. The generated siRNAs are then incorporated into Argonaute complexes and regulate 

gene expression by cleaving the target RNA. 

 

RNase H 

A class of RNA endonucleases that cleaves the RNA strand of a DNA–RNA duplex. Argonaute and 

Piwi proteins share similar catalytic domain structure and activity with RNase H enzymes but are 

mostly active on RNA–RNA hybrids. 

 

RNAi pathway.  

The pathway by which expression or transfection of double-stranded RNA induces degradation — 

by nucleases — of the homologous endogenous transcripts. This mimics the effect of the reduction, 

or loss, of gene activity. 
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microRNA (miRNA) 

A non-coding RNA of 21–24 nucleotides, which is processed from an endogenous 70-nucleotide 

hairpin RNA precursor by the RNase-III-type Dicer enzyme. miRNAs are evolutionarily conserved 

molecules and are thought to have important functions in various biological mechanisms. 

 

Small Interfering RNA (siRNA) 

A short RNA ( 22 nucleotides) that is processed from longer dsRNA during RNAi. These short 

RNAs hybridize with mRNA targets, and confer target specificity to the silencing complexes in 

which they reside. 

 

PAZ domain 

A conserved nucleic-acid-binding structure that is found in members of the Dicer and Argonaute 

protein families. 

 

PIWI domain  

A conserved structure that is found in members of the Argonaute protein family. It is structurally 

similar to ribonuclease-H domains and, in at least some cases, has endoribonuclease activity. 

 

PIWI-box 

A 40-amino-acid sequence located in the C terminus of the Piwi-like protein. 

 

CAP structure  

A structure, which consists of m7GpppN (where m7G represents 7-methylguanylate, p represents a 

phosphate group and N represents any base), that is located at the 5' end of eukaryotic mRNAs. 
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Paralogous, Orthologous 

The quality of having sequence similarity as a result of gene duplication events that occurred in the 

same genome (paralogous) or in a different genome (orthologous).  

 

Poly(A) tail 

 A homopolymeric stretch of usually 25–200 adenine nucleotides that is present at the 3' end of most 

eukaryotic mRNAs. 

 

Mobile elements 

Also known as transposable elements. DNA sequences in the genome that replicate and insert 

themselves into various positions in the genome. 

 

Deadenylation-dependent decapping 

Cytoplasmic RNA degradation that start with the depletion of the poly(A) tail of a mRNA followed 

by removing the cap by decapping enzymes. The decapped RNA is degraded by 5´-3´exonucleases. 

 

Heterochronic phenotypes 

Animals that display observable characteristics related to a specific defect in the developmental 

timing (i.e. larvae that displays adult characteristics or adult animal with larval features).  

 

Active strand 

The strand of a duplex siRNA or miRNA intermediate that dominantly selected and incorporated 

into the RISC. 
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Passenger strand 

The strand of a duplex siRNA or miRNA that not incorporated into RISC and eventually degraded. 

 

Piwi-interacting (pi)RNAs 

Small ~31nt long RNAs that processed a Dicer and Drosha independent manner. They associated 

with Piwi proteins and have role in transposon silencing in flies. In mammals they are restricted 

mostly in the male germ cells. 

 

Cytoplasmic processing bodies 

Cytoplasmic foci that was first detected by the immunostaining with GW182 Antibody. This foci is 

very likely a protein RNA aggregate that degrade RNAs via deadenylation and decapping. It also 

accommodate Argonaute bound miRNAs and miRNA targeted RNAs. Cytoplasmic bodies does not 

form without miRNAs however disruption the cytoplasmic body does not affect miRNA mediated 

gene regulation. 

 

OB (oligonucleotide/oligosaccharide binding)-fold 

Common protein structure involved in nucleic acid binding. 

 

miRNA pathway  

The process that result in a functional miRNA loaded RNA-protein complex. It includes miRNA 

expression, maturation, miRNA loading, and miRNA-loaded RISC formation (also called miRISC). 

 

Dicer 
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The ribonuclease of the RNAse III family that cleaves miRNA precursor (pre-miRNA) and double-

stranded RNA molecules into 21-25 long double-stranded RNA with a two-base overhang on the 3’ 

ends. 

 

Drosha 

The RNAse III enzyme implicated in the processing into the nucleus of the newly transcribed 

primary miRNA. The Drosha cleavage will determine the 5’ and the 3’ ends of the Dicer substrate 

(precursor miRNA or pre-miRNA).  
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