[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Machine learning for quality of transmission: a picture of the benefits fairness when planning WDM networks

Not Accessible

Your library or personal account may give you access

Abstract

In the present day, the evaluation of machine learning (ML) as a candidate for substituting analytical quality of transmission (QoT) estimators is done in a compartmentalized way. The assessment is not produced from a global optical network design perspective and with accurate optical design metrics; on the contrary, the evaluation heavily focuses on the physical layer impairment precision capabilities while underemphasizing the effects at the network layer. In this paper, we recommend a suitable methodology for evaluating the QoT substitution based on the foundational idea that different QoT estimators should be examined on a comparative basis by analyzing network-relevant metrics at parity of availability performance. Pragmatically, we recommend comparing performance estimation solutions through the aggregate network throughput, i.e., capacity, at the equity of their overestimation likelihood, which drives system margins. To demonstrate the need for such a network viewpoint and illustrate the potential drawbacks of an inadequate assessment of the QoT substitution, we use the proposed method in several scenarios (altering network topologies, input parameter uncertainty conditions, and availability requirements), showing that we can achieve gains in QoT estimation error or design margins while observing notable losses in terms of network throughput. Considering the results were contrary to what one may expect, we decided to undergo a statistical analysis in order to investigate and grasp the consequences of the model error distribution in relation to the network capacity.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
QoT estimation using EGN-assisted machine learning for multi-period network planning

Jasper Müller, Sai Kireet Patri, Tobias Fehenberger, Helmut Griesser, Jörg-Peter Elbers, and Carmen Mas-Machuca
J. Opt. Commun. Netw. 14(12) 1010-1019 (2022)

Associating machine-learning and analytical models for quality of transmission estimation: combining the best of both worlds

Emmanuel Seve, Jelena Pesic, and Yvan Pointurier
J. Opt. Commun. Netw. 13(6) C21-C30 (2021)

ML-assisted QoT estimation: a dataset collection and data visualization for dataset quality evaluation

Geronimo Bergk, Behnam Shariati, Pooyan Safari, and Johannes K. Fischer
J. Opt. Commun. Netw. 14(3) 43-55 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (27)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel