# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a377046 Showing 1-1 of 1 %I A377046 #7 Oct 19 2024 21:43:16 %S A377046 4,8,4,9,1,-3,12,3,2,5,16,4,1,-1,-6,18,2,-2,-3,-2,4,20,2,0,2,5,7,3,24, %T A377046 4,2,2,0,-5,-12,-15,25,1,-3,-5,-7,-7,-2,10,25,27,2,1,4,9,16,23,25,15, %U A377046 -10,28,1,-1,-2,-6,-15,-31,-54,-79,-94,-84,32,4,3,4,6,12,27,58,112,191,285,369 %N A377046 Array read by downward antidiagonals where A(n,k) is the n-th term of the k-th differences of nonsquarefree numbers. %C A377046 Row k is the k-th differences of A013929. %F A377046 A(i,j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) A013929(i+k). %e A377046 Array form: %e A377046 n=1: n=2: n=3: n=4: n=5: n=6: n=7: n=8: n=9: %e A377046 --------------------------------------------------------- %e A377046 k=0: 4 8 9 12 16 18 20 24 25 %e A377046 k=1: 4 1 3 4 2 2 4 1 2 %e A377046 k=2: -3 2 1 -2 0 2 -3 1 -1 %e A377046 k=3: 5 -1 -3 2 2 -5 4 -2 4 %e A377046 k=4: -6 -2 5 0 -7 9 -6 6 -7 %e A377046 k=5: 4 7 -5 -7 16 -15 12 -13 10 %e A377046 k=6: 3 -12 -2 23 -31 27 -25 23 -13 %e A377046 k=7: -15 10 25 -54 58 -52 48 -36 13 %e A377046 k=8: 25 15 -79 112 -110 100 -84 49 1 %e A377046 k=9: -10 -94 191 -222 210 -184 133 -48 -57 %e A377046 Triangle form: %e A377046 4 %e A377046 8 4 %e A377046 9 1 -3 %e A377046 12 3 2 5 %e A377046 16 4 1 -1 -6 %e A377046 18 2 -2 -3 -2 4 %e A377046 20 2 0 2 5 7 3 %e A377046 24 4 2 2 0 -5 -12 -15 %e A377046 25 1 -3 -5 -7 -7 -2 10 25 %e A377046 27 2 1 4 9 16 23 25 15 -10 %e A377046 28 1 -1 -2 -6 -15 -31 -54 -79 -94 -84 %e A377046 32 4 3 4 6 12 27 58 112 191 285 369 %t A377046 nn=9; %t A377046 t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,SquareFreeQ[#]&]&,4,2*nn],k],nn],{k,0,nn}] %t A377046 Table[t[[j,i-j+1]],{i,nn},{j,i}] %Y A377046 Initial rows: A013929, A078147, A376593. %Y A377046 The version for primes is A095195, noncomposites A376682, composites A377033. %Y A377046 A version for partitions is A175804, cf. A053445, A281425, A320590. %Y A377046 For squarefree numbers we have A377038, sums A377039, absolute A377040. %Y A377046 Triangle row-sums are A377047, absolute version A377048. %Y A377046 Column n = 1 is A377049, for squarefree A377041, for prime A007442 or A030016. %Y A377046 First position of 0 in each row is A377050. %Y A377046 For prime-power instead of nonsquarefree we have A377051. %Y A377046 A000040 lists the primes, differences A001223, seconds A036263. %Y A377046 A005117 lists the squarefree numbers. %Y A377046 A073576 counts integer partitions into squarefree numbers, factorizations A050320. %Y A377046 Cf. A000961, A007674, A053797, A053806, A061398, A072284, A112925, A120992, A376311, A376591, A376592. %K A377046 sign,tabl %O A377046 0,1 %A A377046 _Gus Wiseman_, Oct 19 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE