# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a349173 Showing 1-1 of 1 %I A349173 #14 Nov 19 2021 16:01:20 %S A349173 0,1,1,7,1,12,1,33,10,16,1,68,1,20,18,131,1,87,1,96,22,28,1,296,16,32, %T A349173 67,124,1,167,1,473,30,40,26,449,1,44,34,428,1,215,1,180,147,52,1, %U A349173 1128,22,171,42,208,1,510,34,560,46,64,1,881,1,68,187,1611,38,311,1,264,54,295,1,1871,1,80,203,292,38,359 %N A349173 Dirichlet convolution of A003415 with A003959, where A003415 is the arithmetic derivative and A003959 is fully multiplicative with a(p) = (p+1). %H A349173 Antti Karttunen, Table of n, a(n) for n = 1..20000 %F A349173 a(n) = Sum_{d|n} A003415(d) * A003959(n/d). %F A349173 a(n) = Sum_{d|n} A349133(d) * A349356(n/d). - _Antti Karttunen_, Nov 16 2021 %F A349173 For all n >= 1, a(n) >= A349133(n). %t A349173 f1[p_, e_] := e/p; f2[p_, e_] := (p + 1)^e; a1[1] = 0; a1[n_] := n*Plus @@ (f1 @@@ FactorInteger[n]); a2[1] = 1; a2[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, a1[#] * a2[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 09 2021 *) %o A349173 (PARI) %o A349173 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); %o A349173 A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); }; %o A349173 A349173(n) = sumdiv(n,d,A003415(d)*A003959(n/d)); %Y A349173 Cf. A003415, A003959, A349129, A349133, A349170, A349171, A349172, A349356. %K A349173 nonn %O A349173 1,4 %A A349173 _Antti Karttunen_, Nov 09 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE