# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a332638 Showing 1-1 of 1 %I A332638 #12 Feb 16 2025 08:33:59 %S A332638 1,1,2,3,5,7,11,15,21,29,40,52,70,91,118,151,195,246,310,388,484,600, %T A332638 743,909,1113,1359,1650,1996,2409,2895,3471,4156,4947,5885,6985,8260, %U A332638 9751,11503,13511,15857,18559,21705,25304,29499,34259,39785,46101,53360,61594 %N A332638 Number of integer partitions of n whose negated run-lengths are unimodal. %C A332638 A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %H A332638 MathWorld, Unimodal Sequence %e A332638 The a(8) = 21 partitions: %e A332638 (8) (44) (2222) %e A332638 (53) (332) (22211) %e A332638 (62) (422) (32111) %e A332638 (71) (431) (221111) %e A332638 (521) (3311) (311111) %e A332638 (611) (4211) (2111111) %e A332638 (5111) (41111) (11111111) %e A332638 Missing from this list is only (3221). %t A332638 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]] %t A332638 Table[Length[Select[IntegerPartitions[n],unimodQ[-Length/@Split[#]]&]],{n,0,30}] %Y A332638 The non-negated version is A332280. %Y A332638 The complement is counted by A332639. %Y A332638 The Heinz numbers of partitions not in this class are A332642. %Y A332638 The case of 0-appended differences (instead of run-lengths) is A332728. %Y A332638 Unimodal compositions are A001523. %Y A332638 Partitions whose run lengths are not unimodal are A332281. %Y A332638 Heinz numbers of partitions with non-unimodal run-lengths are A332282. %Y A332638 Compositions whose negation is unimodal are A332578. %Y A332638 Compositions whose run-lengths are unimodal are A332726. %Y A332638 Cf. A007052, A100883, A115981, A181819, A332283, A332577, A332640, A332669, A332670, A332727. %K A332638 nonn,changed %O A332638 0,3 %A A332638 _Gus Wiseman_, Feb 25 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE