# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a321553 Showing 1-1 of 1 %I A321553 #16 Nov 11 2022 04:34:27 %S A321553 1,255,6562,65279,390626,1673310,5764802,16711423,43053283,99609630, %T A321553 214358882,428360798,815730722,1470024510,2563287812,4278124287, %U A321553 6975757442,10978587165,16983563042,25499674654,37828630724,54661514910,78310985282,109660357726,152588281251,208011334110,282472589764 %N A321553 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^8. %H A321553 Seiichi Manyama, Table of n, a(n) for n = 1..10000 %H A321553 J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8). %H A321553 Index entries for sequences mentioned by Glaisher. %F A321553 G.f.: Sum_{k>=1} k^8*x^k/(1 + x^k). - _Seiichi Manyama_, Nov 23 2018 %F A321553 From _Amiram Eldar_, Nov 11 2022: (Start) %F A321553 Multiplicative with a(2^e) = (127*2^(8*e+1)+1)/255, and a(p^e) = (p^(8*e+8) - 1)/(p^8 - 1) if p > 2. %F A321553 Sum_{k=1..n} a(k) ~ c * n^9, where c = 85*zeta(9)/768 = 0.110899... . (End) %t A321553 Table[Total[(-1)^(n/#+1) #^8&/@Divisors[n]],{n,30}] (* _Harvey P. Dale_, May 05 2021 *) %t A321553 f[p_, e_] := (p^(8*e + 8) - 1)/(p^8 - 1); f[2, e_] := (127*2^(8*e + 1) + 1)/255; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* _Amiram Eldar_, Nov 11 2022 *) %o A321553 (PARI) apply( A321553(n)=sumdiv(n, d, (-1)^(n\d-1)*d^8), [1..30]) \\ _M. F. Hasler_, Nov 26 2018 %Y A321553 Cf. A321543 - A321565, A321807 - A321836 for similar sequences. %Y A321553 Cf. A013667. %K A321553 nonn,mult %O A321553 1,2 %A A321553 _N. J. A. Sloane_, Nov 23 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE