# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a328184 Showing 1-1 of 1 %I A328184 #48 Oct 28 2019 20:41:25 %S A328184 4,8,20,12,28,16,12,20,44,24,52,28,20,32,68,36,76,40,28,44,92,48,100, %T A328184 52,36,56,116,60,124,64,44,68,140,72,148,76,52,80,164,84,172,88,60,92, %U A328184 188,96,196,100,68,104,212,108,220,112,76,116,236,120,244,124,84 %N A328184 Denominator of time taken for a vertex of a rolling regular n-sided polygon to reach the ground. %C A328184 Given an n-sided regular polygon "rolling" on a flat surface with constant angular velocity, a(n) is the denominator of the ratio: [("time" taken for any one vertex to move from highest point to lowest point) / ("time" taken for polygon to finish one complete turn)] := b(n). %C A328184 Lim_{n->infinity} b(n) = 1/2 (can be easily proved). %F A328184 a(n) = denominator((n - 1) / (2*n)) for even n; a(n) = denominator((2*n - 3) / (4*n)) for odd n. %e A328184 For n = 3, a(3) = denominator of ((2*3-3)/4*n) = denominator of (3/12) = denominator of (1/4) = 4. %e A328184 a(4) = 8 since it takes 3/8 of a full revolution of a square for a vertex to go from the highest point to the lowest point. When the vertex is at its highest position the square will be oriented at 45 degrees to the plane. %t A328184 Array[Denominator[(2 (# - 1) - Mod[#, 2])/(4 #)] &, 61, 3] (* _Michael De Vlieger_, Oct 06 2019 *) %o A328184 (PARI) a(n) = {denominator((2*(n-1) - n%2)/(4*n))} \\ _Andrew Howroyd_, Oct 06 2019 %Y A328184 Cf. A328185 (numerators). %K A328184 nonn,frac %O A328184 3,1 %A A328184 _Luca Alexander_, Oct 06 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE