# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a325101 Showing 1-1 of 1 %I A325101 #7 Jul 27 2019 14:57:51 %S A325101 0,1,2,4,5,7,9,11,12,14,16,18,20,22,24,28,29,31,33,35,37,39,41,43,45, %T A325101 47,49,53,55,57,61,63,64,66,68,70,72,74,76,79,81,83,85,87,89,93,95,97, %U A325101 99,101,103,107,109,111,115,118,120,122,124,126,130,132,134 %N A325101 Number of divisible binary-containment pairs of positive integers up to n. %C A325101 A pair of positive integers is divisible if the first divides the second, and is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of those in the second. %F A325101 a(n) = A325106(n) + n. %e A325101 The a(1) = 1 through a(8) = 12 pairs: %e A325101 (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) %e A325101 (2,2) (1,3) (1,3) (1,3) (1,3) (1,3) (1,3) %e A325101 (2,2) (2,2) (1,5) (1,5) (1,5) (1,5) %e A325101 (3,3) (3,3) (2,2) (2,2) (1,7) (1,7) %e A325101 (4,4) (3,3) (2,6) (2,2) (2,2) %e A325101 (4,4) (3,3) (2,6) (2,6) %e A325101 (5,5) (4,4) (3,3) (3,3) %e A325101 (5,5) (4,4) (4,4) %e A325101 (6,6) (5,5) (5,5) %e A325101 (6,6) (6,6) %e A325101 (7,7) (7,7) %e A325101 (8,8) %t A325101 Table[Length[Select[Tuples[Range[n],2],Divisible[#[[2]],#[[1]]]&&SubsetQ[Position[Reverse[IntegerDigits[#[[2]],2]],1],Position[Reverse[IntegerDigits[#1[[1]],2]],1]]&]],{n,0,30}] %Y A325101 Cf. A000005, A006218, A080572, A267610, A267700. %Y A325101 Cf. A325094, A325102, A325106, A325107, A325108, A325109, A325110. %K A325101 nonn %O A325101 0,3 %A A325101 _Gus Wiseman_, Mar 28 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE