# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a324610 Showing 1-1 of 1 %I A324610 #38 Sep 14 2024 12:30:09 %S A324610 1,2,1,16,8,5,272,136,94,61,7936,3968,2840,2108,1385,353792,176896, %T A324610 128704,100096,76474,50521,22368256,11184128,8211200,6531968,5261120, %U A324610 4079408,2702765,1903757312,951878656,702724864,566256256,468079984,384082456,300392854,199360981,209865342976,104932671488,77747624960,63158486528,52998922880,44727839168,37114459400,29186948708,19391512145,29088885112832,14544442556416,10803399245824,8824137404416,7476185292544,6414037062016,5482201711264,4582440724816,3617015269234,2404879675441 %N A324610 E.g.f. S(x,y) = sin(x) / sqrt(1 - sin(x)^2 - sin(y)^2). %C A324610 Row reversal of triangle A324612. %C A324610 Related identity: cos(x+y)*cos(x-y) = (1 - sin(x)^2 - sin(y)^2). - _Paul D. Hanna_, Sep 14 2024 %C A324610 Name changed Sep 14 2024; prior name was: E.g.f. S(x,y) = Integral C(x,y)^2 * C(y,x) dx, where C(x,y)^2 - S(x,y)^2 = 1 and C(y,x) = Integral S(y,x)*C(x,y)*C(y,x) dy. %H A324610 Paul D. Hanna, Table of n, a(n) for n = 0..495 terms in rows 0..30 of this triangle in flattened form. %F A324610 E.g.f. Sx = S(x,y) and related functions Cx = C(x,y), Sy = S(y,x), and Cy = C(y,x) satisfy the following relations. %F A324610 (1a) Cx = 1 + Integral Sx * Cx*Cy dx. %F A324610 (1b) Sx = Integral Cx * Cx*Cy dx. %F A324610 (1c) Cy = 1 + Integral Sy * Cx*Cy dy. %F A324610 (1d) Sy = Integral Cy * Cx*Cy dy. %F A324610 (2a) Cx^2 - Sx^2 = 1. %F A324610 (2b) Cy^2 - Sy^2 = 1. %F A324610 (3a) Cx = cosh( Integral Cx*Cy dx ). %F A324610 (3b) Sx = sinh( Integral Cx*Cy dx ). %F A324610 (3c) Cy = cosh( Integral Cx*Cy dy ). %F A324610 (3d) Sy = sinh( Integral Cx*Cy dy ). %F A324610 (4a) Cx + Sx = exp( Integral Cx*Cy dx ). %F A324610 (4b) Cy + Sy = exp( Integral Cx*Cy dy ). %F A324610 (5a) (Cx + Sx)*(Cy + Sy) = (1 + sin(x+y))/cos(x+y). %F A324610 (5b) (Cx + Sx)*(Cy - Sy) = (1 + sin(x-y))/cos(x-y). %F A324610 (6a) Cx*Cy + Sx*Sy = 1/cos(x+y). %F A324610 (6b) Cx*Sy + Sx*Cy = tan(x+y). %F A324610 (7a) Cx*Cy = ( 1/cos(x+y) + 1/cos(x-y) )/2. %F A324610 (7b) Sx*Sy = ( 1/cos(x+y) - 1/cos(x-y) )/2. %F A324610 (7c) Cx*Sy = ( tan(x+y) - tan(x-y) )/2. %F A324610 (7d) Sx*Cy = ( tan(x+y) + tan(x-y) )/2. %F A324610 (8a) Cx*Cy = cos(x)*cos(y) / (cos(x+y)*cos(x-y)). %F A324610 (8b) Sx*Sy = sin(x)*sin(y) / (cos(x+y)*cos(x-y)). %F A324610 (8c) Cx*Sy = cos(y)*sin(y) / (cos(x+y)*cos(x-y)). %F A324610 (8d) Sx*Cy = sin(x)*cos(x) / (cos(x+y)*cos(x-y)). %F A324610 (9a) Cx + Sx = sqrt( (1 + sin(x+y))/cos(x+y) * (1 + sin(x-y))/cos(x-y) ). %F A324610 (9b) Cy + Sy = sqrt( (1 + sin(x+y))/cos(x+y) * (1 - sin(x-y))/cos(x-y) ). %F A324610 (9c) Cx - Sx = sqrt( (1 - sin(x+y))/cos(x+y) * (1 - sin(x-y))/cos(x-y) ). %F A324610 (9d) Cy - Sy = sqrt( (1 - sin(x+y))/cos(x+y) * (1 + sin(x-y))/cos(x-y) ). %F A324610 Let E(x,y) = sqrt( (1 + sin(x+y))/cos(x+y) * (1 + sin(x-y))/cos(x-y) ) then %F A324610 (10a) E(x,y) = C(x,y) + S(x,y) where E(-x,y) = 1/E(x,y), %F A324610 (10b) C(x,y) = (E(x,y) + E(-x,y))/2, %F A324610 (10c) S(x,y) = (E(x,y) - E(-x,y))/2. %F A324610 From _Paul D. Hanna_, Sep 14 2024: (Start) Explicitly, %F A324610 (11a) Cx = cos(y) / sqrt(1 - sin(x)^2 - sin(y)^2). %F A324610 (11b) Sx = sin(x) / sqrt(1 - sin(x)^2 - sin(y)^2). %F A324610 (11c) Cy = cos(x) / sqrt(1 - sin(x)^2 - sin(y)^2). %F A324610 (11d) Sy = sin(y) / sqrt(1 - sin(x)^2 - sin(y)^2). %F A324610 (End) %F A324610 PARTICULAR ARGUMENTS. %F A324610 E.g.f. at y = 0: S(x,y=0) = tan(x). %F A324610 E.g.f. at y = x: S(x,y=x) = sin(x)/sqrt(cos(2*x)). %F A324610 FORMULAS INVOLVING TERMS. %F A324610 T(n,n) = A000364(n) for n >= 0, where A000364 is the secant numbers. %F A324610 T(n-1,0) = A000182(n) for n >= 1, where A000182 is the tangent numbers. %e A324610 E.g.f.: S(x,y) = x + (2*x^3/3! + 1*x*y^2/2!) + (16*x^5/5! + 8*x^3*y^2/(3!*2!) + 5*x*y^4/4!) + (272*x^7/7! + 136*x^5*y^2/(5!*2!) + 94*x^3*y^4/(3!*4!) + 61*x*y^6/6!) + (7936*x^9/9! + 3968*x^7*y^2/(7!*2!) + 2840*x^5*y^4/(5!*4!) + 2108*x^3*y^6/(3!*6!) + 1385*x*y^8/8!) + (353792*x^11/11! + 176896*x^9*y^2/(9!*2!) + 128704*x^7*y^4/(7!*4!) + 100096*x^5*y^6/(5!*6!) + 76474*x^3*y^8/(3!*8!) + 50521*x*y^10/10!) + (22368256*x^13/13! + 11184128*x^11*y^2/(11!*2!) + 8211200*x^9*y^4/(9!*4!) + 6531968*x^7*y^6/(7!*6!) + 5261120*x^5*y^8/(5!*8!) + 4079408*x^3*y^10/(3!*10!) + 2702765*x*y^12/12!) + ... %e A324610 such that S(x,y) = Integral C(x,y)^2 * C(y,x) dx. %e A324610 Explicitly, %e A324610 S(x,y) = ( sqrt( (1 + sin(x+y))/cos(x+y) * (1 + sin(x-y))/cos(x-y) ) - sqrt( (1 - sin(x+y))/cos(x+y) * (1 - sin(x-y))/cos(x-y) ) )/2. %e A324610 This triangle of coefficients T(n,k) of x^(2*n-2*k+1)*y^(2*k)/((2*n-2*k+1)!*(2*k)!) in e.g.f. S(x,y) begins %e A324610 1; %e A324610 2, 1; %e A324610 16, 8, 5; %e A324610 272, 136, 94, 61; %e A324610 7936, 3968, 2840, 2108, 1385; %e A324610 353792, 176896, 128704, 100096, 76474, 50521; %e A324610 22368256, 11184128, 8211200, 6531968, 5261120, 4079408, 2702765; %e A324610 1903757312, 951878656, 702724864, 566256256, 468079984, 384082456, 300392854, 199360981; %e A324610 209865342976, 104932671488, 77747624960, 63158486528, 52998922880, 44727839168, 37114459400, 29186948708, 19391512145; ... %e A324610 RELATED SERIES. %e A324610 S(y,x) = y + (1*x^2*y/2! + 2*y^3/3!) + (5*x^4*y/4! + 8*x^2*y^3/(2!*3!) + 16*y^5/5!) + (61*x^6*y/6! + 94*x^4*y^3/(4!*3!) + 136*x^2*y^5/(2!*5!) + 272*y^7/7!) + (1385*x^8*y/8! + 2108*x^6*y^3/(6!*3!) + 2840*x^4*y^5/(4!*5!) + 3968*x^2*y^7/(2!*7!) + 7936*y^9/9!) + (50521*x^10*y/10! + 76474*x^8*y^3/(8!*3!) + 100096*x^6*y^5/(6!*5!) + 128704*x^4*y^7/(4!*7!) + 176896*x^2*y^9/(2!*9!) + 353792*y^11/11!) + (2702765*x^12*y/12! + 4079408*x^10*y^3/(10!*3!) + 5261120*x^8*y^5/(8!*5!) + 6531968*x^6*y^7/(6!*7!) + 8211200*x^4*y^9/(4!*9!) + 11184128*x^2*y^11/(2!*11!) + 22368256*y^13/13!) + ... %e A324610 such that C(y,x)^2 - S(y,x)^2 = 1. %e A324610 C(x,y) = 1 + (1*x^2/2!) + (5*x^4/4! + 2*x^2*y^2/(2!*2!)) + (61*x^6/6! + 28*x^4*y^2/(4!*2!) + 16*x^2*y^4/(2!*4!)) + (1385*x^8/8! + 662*x^6*y^2/(6!*2!) + 440*x^4*y^4/(4!*4!) + 272*x^2*y^6/(2!*6!)) + (50521*x^10/10! + 24568*x^8*y^2/(8!*2!) + 17176*x^6*y^4/(6!*4!) + 12448*x^4*y^6/(4!*6!) + 7936*x^2*y^8/(2!*8!)) + (2702765*x^12/12! + 1326122*x^10*y^2/(10!*2!) + 949520*x^8*y^4/(8!*4!) + 727232*x^6*y^6/(6!*6!) + 546560*x^4*y^8/(4!*8!) + 353792*x^2*y^10/(2!*10!)) + ... %e A324610 such that C(x,y)^2 - S(x,y)^2 = 1. %e A324610 C(y,x) = 1 + (1*y^2/2!) + (2*x^2*y^2/(2!*2!) + 5*y^4/4!) + (16*x^4*y^2/(4!*2!) + 28*x^2*y^4/(2!*4!) + 61*y^6/6!) + (272*x^6*y^2/(6!*2!) + 440*x^4*y^4/(4!*4!) + 662*x^2*y^6/(2!*6!) + 1385*y^8/8!) + (7936*x^8*y^2/(8!*2!) + 12448*x^6*y^4/(6!*4!) + 17176*x^4*y^6/(4!*6!) + 24568*x^2*y^8/(2!*8!) + 50521*y^10/10!) + (353792*x^10*y^2/(10!*2!) + 546560*x^8*y^4/(8!*4!) + 727232*x^6*y^6/(6!*6!) + 949520*x^4*y^8/(4!*8!) + 1326122*x^2*y^10/(2!*10!) + 2702765*y^12/12!) + ... %e A324610 such that C(y,x) = cosh( Integral C(x,y)*C(y,x) dy ). %o A324610 (PARI) {T(n,k) = my(Cx = 1 + x*O(x^(2*n)), Cy = 1 + y*O(y^(2*n))); %o A324610 for(i=1,2*n, %o A324610 Cx = cosh(intformal(Cx*Cy,x)); %o A324610 Cy = cosh(intformal(Cx*Cy,y));); %o A324610 Sx = sinh(intformal(Cx*Cy,x)); %o A324610 Sy = sinh(intformal(Cx*Cy,y)); %o A324610 (2*n-2*k+1)!*(2*k)! * polcoeff(polcoeff(Sx,2*n-2*k+1,x),2*k,y)} %o A324610 for(n=0,10,for(k=0,n, print1( T(n,k),", "));print("")) %Y A324610 Cf. A324609 (C(x,y)), A324612 (S(y,x)), A324611 (C(y,x)). %Y A324610 Cf. A000364 (T(n,n)), A000182 (T(n,n-1)). %Y A324610 Cf. A322220 (variant). %K A324610 nonn,tabl %O A324610 0,2 %A A324610 _Paul D. Hanna_, Mar 09 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE