# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a289070 Showing 1-1 of 1 %I A289070 #16 Nov 23 2024 05:43:53 %S A289070 3,9,108,2754,120528,8059824,764365248,97582435344,16135857600768, %T A289070 3354823392632064,856584985953881088,263495061361859433984, %U A289070 96111473403635977310208,41016996175782988022575104,20247499012863186836834992128,11447373157054380028382302439424 %N A289070 a(n) = c(2n-1), where c(n+2) = Sum_{k=0..n} binomial(n,k)c(k)c(n+1-k) with c(0)=0, c(1)=3. %C A289070 The sequence c(n) is one of a family of integer sequences whose e.g.f.s satisfy the differential equation f''(z) = f'(z)f(z). %C A289070 Since c(0)=0, all its even terms are zero, and only the odd terms are listed here. For more details, see A289064 and the link. %H A289070 Stanislav Sykora, Table of n, a(n) for n = 1..100 %H A289070 Stanislav Sykora, Sequences related to the differential equation f'' = af'f, Stan's Library, Vol. VI, Jun 2017. %F A289070 E.g.f.: odd terms of sqrt(6)*tan(z*sqrt(3/2)). %F A289070 E.g.f. for (-1)^(n)*a(n): odd terms of -sqrt(6)*tanh(z*sqrt(3/2)). %F A289070 a(n) ~ (2n-1)! * 2^(n+2) * 3^n / Pi^(2*n). - _Vaclav Kotesovec_, Jun 24 2017 %o A289070 (PARI) c0=0;c1=3;nmax = 200; %o A289070 s=vector(nmax+1);s[1]=c0;s[2]=c1; %o A289070 for(m=0,#s-3,s[m+3]=sum(k=0,m,binomial(m,k)*s[k+1]*s[m+2-k])); %o A289070 a = vector((nmax+1)\2,i,s[2*i]) %Y A289070 Sequences for other starting pairs: A000111 (1,1), A289064 (1,-1), A289065 (2,-1), A289066 (3,1), A289067 (3,-1), A289068 (1,-2), A289069 (3,-2). %K A289070 nonn %O A289070 1,1 %A A289070 _Stanislav Sykora_, Jun 23 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE