# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a273227 Showing 1-1 of 1 %I A273227 #18 Jul 09 2018 23:36:09 %S A273227 4,5,6,6,7,7,9,8,8,9,9,10,13,10,10,15,12,11,11,12,14,19,12,12,21,16, %T A273227 13,13,15,14,25,14,14,15,20,17,15,16,15,22,31,16,33,16,16,18,17,21,26, %U A273227 17,17,39,20,23,18,19,18,18,43,19,22,45,32,19,19,20,27,34 %N A273227 Consider all ways of writing the n-th composite number as the product of two divisors d1*d2 = d3*d4 = ...; a(n) is the minimum of the sums {d1 + d2, d3 + d4, ...}. %C A273227 a(n) = A046343(n) if n is semiprime. %C A273227 This sequence is included in A063655. - _Giovanni Resta_, May 18 2016 %C A273227 a(n) >= 2 * sqrt(A002808(n)). - _David A. Corneth_, May 20 2016 %H A273227 Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 %e A273227 a(14) = 10 because A002808(14) = 24 = 2*12 = 3*8 = 4*6 and 4+6 = 10 is the minimum sum. %p A273227 with(numtheory):nn:=100:lst:={}: %p A273227 for n from 1 to nn do: %p A273227 it:=0:lst:={}: %p A273227 d:=divisors(n):n0:=nops(d): %p A273227 if n0>2 then %p A273227 for i from 2 to n0-1 do: %p A273227 p:=d[i]: %p A273227 for j from i to n0-1 do: %p A273227 q:=d[j]: %p A273227 if p*q=n then %p A273227 lst:=lst union {p+q}: %p A273227 else %p A273227 fi: %p A273227 od: %p A273227 od: %p A273227 printf(`%d, `,lst[1]): %p A273227 fi: %p A273227 od: %t A273227 Function[n, If[OddQ@ Length@ #, 2 Sqrt@ n, Total@ Take[#, {Length[#]/2, Length[#]/2 + 1}]] &@ Divisors@ n] /@ Select[Range@ 93, CompositeQ] (* _Michael De Vlieger_, May 20 2016 *) %t A273227 msd[n_]:=Module[{d=Divisors[n],len},len=Length[d];If[OddQ[len], 2*d[[ (len+1)/2]], d[[len/2]]+d[[len/2+1]]]]; msd/@Select[Range[200], CompositeQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jul 09 2018 *) %o A273227 (PARI) forcomposite(n=4,100, d=divisors(n); t=#d; k=if(t%2,2*d[t\2+1], d[t\2]+d[t\2+1]); print1(k", ")) \\ _Charles R Greathouse IV_, Jun 08 2016 %Y A273227 Cf. A002808, A046343, A063655. %K A273227 nonn %O A273227 1,1 %A A273227 _Michel Lagneau_, May 18 2016 %E A273227 Name edited by _Jon E. Schoenfield_, Sep 12 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE