# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a275788 Showing 1-1 of 1 %I A275788 #29 Oct 09 2016 04:13:44 %S A275788 0,1,3,7,13,25,49,99,199,399,797,1593,3185,6371,12743,25487,50973, %T A275788 101945,203889,407779,815559,1631119,3262237,6524473,13048945, %U A275788 26097891,52195783,104391567,208783133,417566265,835132529,1670265059,3340530119,6681060239 %N A275788 a(0) = 0, a(n+1) = 2*a(n) + (-1)^floor(n/3). %C A275788 a(n) and its successive differences: %C A275788 0, 1, 3, 7, 13, 25, 49, ... %C A275788 1, 2, 4, 6, 12, 24, 50, 100, ... %C A275788 1, 2, 2, 6, 12, 26, 50, 100, 198, ... %C A275788 1, 0, 4, 6, 14, 24, 50, 98, 200, 398, ... %C A275788 -1, 4, 2, 8, 10, 26, 48, 102, 198, 400, 794, ... %C A275788 5, -2, 6, 2, 16, 22, 54, 96, 202, 394, 800, 1590, ... %C A275788 -7, 8, -4, 14, 6, 32, 42, 106, 192, 406, 790, 1600, 3178, ... %C A275788 ... . %C A275788 Each row has the recurrence a(n) + a(n+3) = 7*2^n. %C A275788 Main diagonal: 2*A001045(n). %C A275788 Upper diagonals: A084214(n+1), 3*2^n, ... . %C A275788 Subdiagonals: 2^n, A078008(n), A084214(n+1), -2^n, ... . %C A275788 a(-n) = 0, 1/2, 3/4, 7/8, -1/16, -17/32, -49/64, 15/128, ... . %C A275788 b(n), numerators of a(-n), and first differences: %C A275788 0, 1, 3, 7, -1, -17, -49, 15, 143, 399, -113, -1137, ... %C A275788 1, 2, 4, -8, -16, -32, 64, 128, 256, -512, -1024, ... = A000079(n)*A130151(n), not in the OEIS. %H A275788 Colin Barker, Table of n, a(n) for n = 0..1000 %H A275788 Index entries for linear recurrences with constant coefficients, signature (2,0,-1,2). %F A275788 From _Colin Barker_, Aug 09 2016: (Start) %F A275788 a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) for n>3. %F A275788 G.f.: x*(1 + x + x^2) / ((1+x)*(1-2*x)*(1-x+x^2)). %F A275788 (End) %F A275788 a(n+3) = 7*2^n - a(n), a(0)=0, a(1)=1, a(2)=3. %e A275788 a(1)=2*0+1=1, a(2)=2*1+1=3, a(2)=2*3+1=7, a(3)=2*7-1=13, a(4)=2*13-1=25, ... . %t A275788 CoefficientList[Series[x (1 + x + x^2)/((1 + x) (1 - 2 x) (1 - x + x^2)), {x, 0, 33}], x] (* _Michael De Vlieger_, Aug 11 2016 *) %t A275788 LinearRecurrence[{2,0,-1,2}, {0, 1, 3, 7}, 25] (* _G. C. Greubel_, Aug 16 2016 *) %o A275788 (PARI) concat(0, Vec(x*(1+x+x^2)/((1+x)*(1-2*x)*(1-x+x^2)) + O(x^40))) \\ _Colin Barker_, Aug 10 2016 %Y A275788 Cf. A000079, A001045, A002264, A005009, A007283, A078008, A084214, A113405, A130151, A274817. %K A275788 nonn %O A275788 0,3 %A A275788 _Paul Curtz_, Aug 09 2016 %E A275788 More terms from _Colin Barker_, Aug 10 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE