# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a260486 Showing 1-1 of 1 %I A260486 #10 Feb 16 2025 08:33:26 %S A260486 1,-4,4,2,-4,0,2,0,-4,0,0,8,-2,0,0,0,-4,-8,0,8,0,0,8,0,-2,-4,0,-2,0,0, %T A260486 0,0,-4,-4,8,0,0,0,8,0,0,-8,0,8,-8,0,0,0,-2,-4,4,4,0,0,-2,0,0,-4,0,8, %U A260486 0,0,0,0,-4,0,4,8,-8,0,0,0,0,-8,0,2,-8,0,0,0 %N A260486 Expansion of phi(-x)^2 * phi(-x^6) / phi(-x^3) in powers of x where phi() is a Ramanujan theta function. %C A260486 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %H A260486 G. C. Greubel, Table of n, a(n) for n = 0..1000 %H A260486 Michael Somos, Introduction to Ramanujan theta functions %H A260486 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions %F A260486 Expansion of eta(q)^4 * eta(q^6)^3 / (eta(q^2)^2 *eta(q^3)^2 *eta(q^12)) in powers of q. %F A260486 Euler transform of period 12 sequence [ -4, -2, -2, -2, -4, -3, -4, -2, -2, -2, -4, -2, ...]. %F A260486 Convolution of A010815 and A257657. %e A260486 G.f. = 1 - 4*x + 4*x^2 + 2*x^3 - 4*x^4 + 2*x^6 - 4*x^8 + 8*x^11 - 2*x^12 + ... %t A260486 a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x]^2 EllipticTheta[ 4, 0, x^6] / EllipticTheta[ 4, 0, x^3], {x, 0, n}]; %t A260486 a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2 QPochhammer[ x]^2 QPochhammer[ -x^3] / QPochhammer[ x^3], {x, 0, n}]; %t A260486 a[ n_] := If[ n < 1, Boole[n == 0], -4 I^(n-1) Sum[ {1, I, -1/2, I, 1, -I/2}[[Mod[d, 6, 1]]] KroneckerSymbol[ -2, n/d], {d, Divisors[ n]}]]; %t A260486 a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, -x]^2* EllipticTheta[3, 0, -x^6]/EllipticTheta[3, 0, -x^3], {x, 0, n}]; Table[a[n], {n,0,50}] (* _G. C. Greubel_, Mar 17 2018 *) %o A260486 (PARI) {a(n) = if( n<1, n==0, -4 * I^(n-1) * sumdiv(n, d, [-I/2, 1, I, -1/2, I, 1][d%6+1] * kronecker(-2, n/d)))}; %o A260486 (PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); -4 * I^(n-1) * prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, I, p==3, 1-e/2, p%8 > 4, !(e%2), e+1)))}; %o A260486 (PARI) {a(n) = if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^6 + A)^3 / (eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^12 + A)), n))}; %Y A260486 Cf. A010815, A257657. %K A260486 sign,changed %O A260486 0,2 %A A260486 _Michael Somos_, Jul 26 2015 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE