# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a265058 Showing 1-1 of 1 %I A265058 #19 Feb 20 2024 16:06:50 %S A265058 1,3,5,7,9,12,16,21,27,33,40,49,61,76,94,116,142,174,214,264,326,401, %T A265058 493,606,745,917,1129,1390,1710,2103,2587,3183,3917,4820,5931,7297, %U A265058 8977,11045,13590,16722,20575,25315,31147,38322,47151,58015,71382,87828,108062,132958,163590,201280,247654 %N A265058 Coordination sequence for (2,3,8) tiling of hyperbolic plane. %H A265058 G. C. Greubel, Table of n, a(n) for n = 0..1000 %H A265058 J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1. %H A265058 Index entries for linear recurrences with constant coefficients, signature (0, 0, 1, 0, 1, 0, 1, 0, 0, -1). %F A265058 G.f.: (x+1)^2*(x^2+x+1)*(x^6+x^4+x^2+1)/(x^10-x^7-x^5-x^3+1). %t A265058 CoefficientList[Series[(x + 1)^2 (x^2 + x + 1) (x^6 + x^4 + x^2 + 1)/(x^10 - x^7 - x^5 - x^3 + 1), {x, 0, 60}], x] (* _Vincenzo Librandi_, Dec 30 2015 *) %o A265058 (PARI) x='x+O('x^50); Vec((x+1)^2*(x^2+x+1)*(x^6+x^4+x^2+1)/(x^10-x^7-x^5-x^3+1)) \\ _G. C. Greubel_, Aug 06 2017 %Y A265058 Coordination sequences for triangular tilings of hyperbolic space: A001630, A007283, A054886, A078042, A096231, A163876, A179070, A265057, A265058, A265059, A265060, A265061, A265062, A265063, A265064, A265065, A265066, A265067, A265068, A265069, A265070, A265071, A265072, A265073, A265074, A265075, A265076, A265077. %K A265058 nonn,easy %O A265058 0,2 %A A265058 _N. J. A. Sloane_, Dec 29 2015 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE