# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a235482 Showing 1-1 of 1 %I A235482 #16 Jan 16 2022 23:26:34 %S A235482 2,3,7,11,17,19,37,41,61,67,71,97,109,131,139,149,151,157,167,191,197, %T A235482 211,251,269,281,337,349,367,401,409,439,449,457,467,487,491,499,521, %U A235482 557,569,607,619,631,647,661,739,761,769,821,829,887,907,941,947,967,1009,1019,1031,1061,1069,1087 %N A235482 Primes whose base-5 representation is also the base-9 representation of a prime. %C A235482 This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10. %C A235482 A subsequence of A197636 and of course of A000040 ⊂ A015919. %H A235482 Giovanni Resta, Table of n, a(n) for n = 1..10000 %H A235482 M. F. Hasler, Primes whose base c expansion is also the base b expansion of a prime %e A235482 41 = 131_5 and 131_9 = 109 are both prime, so 41 is a term. %t A235482 Select[Prime@ Range@ 500, PrimeQ@ FromDigits[ IntegerDigits[#, 5], 9] &] (* _Giovanni Resta_, Sep 12 2019 *) %o A235482 (PARI) is(p,b=9,c=5)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: Code only valid for b > c. %Y A235482 Cf. A235265, A235266, A235461 - A235481, A065720 ⊂ A036952, A065721 - A065727, A089971 ⊂ A020449, A089981, A090707 - A091924, A235394, A235395. See the LINK for further cross-references. %K A235482 nonn,base %O A235482 1,1 %A A235482 _M. F. Hasler_, Jan 12 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE