# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a213201 Showing 1-1 of 1 %I A213201 #45 Aug 06 2024 10:34:46 %S A213201 3,4,4,0,2,3,6,9,6,7,1,2,3,2,0,6,2,4,8,8,2,5,2,3,8,7,6,0,0,3,9,9,4,4, %T A213201 4,0,9,1,0,6,7,7,2,8,5,8,1,4,0,5,9,9,8,8,6,3,1,4,3,3,7,7,1,8,2,9,8,1, %U A213201 8,0,8,1,3,3,1,6,7,2,9,2,8,4,8,4,0,4,5,1,5,3,6,8,5,2,9,2,9,1,8,8,3,7,2,6,1 %N A213201 Mean of leading digits in real-life sources of data, according to Benford's law (also called the first-digit law). %D A213201 Scott, P., and Fasli, M. (2001). Benford's law: An empirical investigation and a novel explanation. Unpublished Manuscript. %H A213201 Alois P. Heinz, Table of n, a(n) for n = 1..1000 %H A213201 Steven Finch, Newcomb-Benford Law, August 17, 2011. [Cached copy, with permission of the author] %H A213201 M. Grendar, G. Judge, L. Schechter, An empirical non-parametric likelihood family of data-based Benford-like distributions, Physica A: Statistical Mechanics and its Applications, (2007) 380, 429-438. %H A213201 G. Judge and L. Schechter, Detecting problems in survey data using Benford's law, Journal of Human Resources, Winter 2009, 44, 1-24. %H A213201 Zhipeng Li, Lin Cong, and Huajia Wang, Discussion on Benford's Law and its Application, arXiv:math/0408057 [math.ST], 2004. %H A213201 I. Suh and T. C. Headrick, A comparative analysis of the bootstrap versus traditional statistical procedures applied to digital analysis based on Benford's Law, Journal of Forensic and Investigative Accounting, 2010, Vol. 2, No. 2, pp. 144-175. %H A213201 Wikipedia, Benford's law %H A213201 Index entries for sequences related to Benford's law %F A213201 Equals Sum_{d=1..9} d*log(1+1/d)/log(10). %e A213201 3.44023696712320624882523876... %t A213201 RealDigits[Log[10, 1562500/567], 10, 105][[1]] (* _Jean-François Alcover_, Nov 28 2018 *) %o A213201 (MATLAB) digits(100);clear R;for i=1:9;R(i)=vpa([num2str(i) '*log10(1+1/' num2str(i) ')']);end;sum(R) %o A213201 (MATLAB) vpa('2*log10(2)-4*log10(3)+8*log10(5)-log10(7)') %o A213201 (PARI) sum(d=1, 9, d*log(1+1/d)/log(10)) \\ _Michel Marcus_, Nov 28 2018 %K A213201 nonn,cons %O A213201 1,1 %A A213201 _Joost de Winter_, Mar 01 2013 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE