# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a179001 Showing 1-1 of 1 %I A179001 #30 Sep 08 2022 08:45:54 %S A179001 0,0,0,0,1,2,4,8,15,26,44,73,121,198,323,526,855,1387,2248,3641,5896, %T A179001 9544,15447,24999,40455,65463,105927,171399,277336,448745,726091, %U A179001 1174847,1900950,3075809,4976771,8052592,13029376,21081981,34111370,55193365,89304750 %N A179001 Partial sums of floor(Fibonacci(n)/3). %C A179001 Partial sums of A004696. %H A179001 Vincenzo Librandi, Table of n, a(n) for n = 0..280 %H A179001 Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. %F A179001 a(n) = round(Fibonacci(n+2)/3 - 3*n/8 - 11/24). %F A179001 a(n) = round(Fibonacci(n+2)/3 - 3*n/8 - 1/3). %F A179001 a(n) = floor(Fibonacci(n+2)/3 - 3*n/8 - 1/6). %F A179001 a(n) = ceiling(Fibonacci(n+2)/3 - 3*n/8 - 3/4). %F A179001 a(n) = a(n-8) + Fibonacci(n-1) + Fibonacci(n-3) - 3, n > 8. %F A179001 a(n) = 2*a(n-1) - a(n-3) + a(n-8) - 2*a(n-9) + a(n-11), n > 10. %F A179001 G.f.: -x^4*(1 + x^4 + x^3) / ( (1+x)*(x^2+1)*(x^2+x-1)*(x^4+1)*(x-1)^2 ). %e A179001 a(9) = 0 + 0 + 0 + 0 + 1 + 1 + 2 + 4 + 7 + 11 = 26. %p A179001 A179001 := proc(n) add( floor(combinat[fibonacci](i)/3),i=0..n) ; end proc: %t A179001 Accumulate[Floor[Fibonacci[Range[0,40]]/3]] (* _Harvey P. Dale_, Jun 13 2022 *) %o A179001 (Magma) [Floor(Fibonacci(n+2)/3-3*n/8-1/6): n in [0..40]]; // _Vincenzo Librandi_, Apr 28 2011 %Y A179001 Cf. A004696. %K A179001 nonn %O A179001 0,6 %A A179001 _Mircea Merca_, Jan 03 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE