# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a160870 Showing 1-1 of 1 %I A160870 #19 Dec 10 2018 08:52:56 %S A160870 1,1,1,1,3,1,1,4,7,1,1,7,13,15,1,1,6,35,40,31,1,1,12,31,155,121,63,1, %T A160870 1,8,91,156,651,364,127,1,1,15,57,600,781,2667,1093,255,1,1,13,155, %U A160870 400,3751,3906,10795,3280,511,1,1,18,130,1395,2801,22932,19531,43435,9841,1023,1 %N A160870 Array read by antidiagonals: T(n,k) is the number of sublattices of index n in generic k-dimensional lattice (n >= 1, k >= 1). %D A160870 Günter Scheja, Uwe Storch, Lehrbuch der Algebra, Teil 2. BG Teubner, Stuttgart, 1988. [§63, Aufg. 13] %H A160870 Álvar Ibeas, First 100 antidiagonals, flattened %H A160870 Michael Baake, Solution of the coincidence problem in dimensions d≤4, arXiv:math/0605222 [math.MG], 2006. [Appx. A] %H A160870 B. Gruber, Alternative formulas for the number of sublattices, Acta Cryst. A53 (1997) 807-808. %H A160870 J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. %H A160870 Yi Ming Zou, Gaussian binomials and the number of sublattices, arXiv:math/0610684 [math.CO], 2006. %H A160870 Yi Ming Zou, Gaussian binomials and the number of sublattices, Acta Cryst. A62 (2006) 409-410. %F A160870 T(n,1) = 1; T(1,k) = 1; T(n, k) = Sum_{d|n} d*T(d, k-1). %F A160870 From _Álvar Ibeas_, Oct 31 2015: (Start) %F A160870 T(n,k) = Sum_{d|n} (n/d)^(k-1) * T(d, k-1). %F A160870 T(Product(p^e), k) = Product(Gaussian_poly[e+k-1, e]_p). %F A160870 (End) %e A160870 Array begins: %e A160870 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,... %e A160870 1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535,... %e A160870 1,4,13,40,121,364,1093,3280,9841,29524,88573,265720,797161,2391484,... %e A160870 1,7,35,155,651,2667,10795,43435,174251,698027,2794155,11180715,... %e A160870 1,6,31,156,781,3906,19531,97656,488281,2441406,12207031,61035156,... %e A160870 ... %t A160870 T[_, 1] = 1; T[1, _] = 1; T[n_, k_] := T[n, k] = DivisorSum[n, (n/#)^(k-1) *T[#, k-1]&]; Table[T[n-k+1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Dec 04 2015 *) %o A160870 (PARI): %o A160870 adu(M)= %o A160870 { /* Read by AntiDiagonals, Upwards */ %o A160870 local(N=matsize(M)[1]); %o A160870 for (n=1,N, for(j=0,n-1, print1(M[n-j, j+1], ", ") ) ); %o A160870 } %o A160870 T(n,k)= %o A160870 { %o A160870 if ( (n==1) || (k==1), return(1) ); %o A160870 return( sumdiv(n,d, d*T(d, k-1)) ); %o A160870 } %o A160870 M=matrix(15,15,n,k,T(n,k)) /* square array */ %o A160870 adu(M) /* sequence */ %Y A160870 Columns: A000203, A001001, A038991, A038992, A038993, A038994, A038995, A038996, A038997. %Y A160870 Rows: A000012, A000225, A003462, A006095, A003463, A160869, A023000, A006096. %Y A160870 Transposed array: A128119. %K A160870 nonn,tabl,easy %O A160870 1,5 %A A160870 _N. J. A. Sloane_, Nov 19 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE