# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a158933 Showing 1-1 of 1 %I A158933 #50 Feb 16 2025 08:33:10 %S A158933 2,8,9,1,4,4,6,4,8,5,7,0,6,7,1,5,8,3,1,1,2,3,0,5,5,0,9,6,1,5,7,2,9,1, %T A158933 6,6,9,5,4,8,8,1,9,5,1,5,8,9,6,9,1,3,6,0,0,2,5,0,2,6,4,8,5,0,6,3,0,3, %U A158933 5,7,6,1,7,3,8,8,6,4,5,5,1,5,8,2,4,1,1,5,8,3,1,8,2,8,5 %N A158933 Decimal expansion of Sum_{n>=1} ((-1)^(n+1))/F(n) where F(n) is the n-th Fibonacci number A000045(n). %C A158933 André-Jeannin (1989) proved that this constant is irrational, and Tachiya (2004) proved that it does not belong to the quadratic number field Q(sqrt(5)). - _Amiram Eldar_, Oct 30 2020 %H A158933 Richard André-Jeannin, Irrationalité de la somme des inverses de certaines suites récurrentes, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Vol. 308, No. 19 (1989), pp. 539-541. %H A158933 Yohei Tachiya, Irrationality of certain Lambert series, Tokyo Journal of Mathematics, Vol. 27, No. 1 (2004), pp. 75-85. %H A158933 Eric Weisstein's World of Mathematics, Reciprocal Fibonacci Constant. %F A158933 Equals sqrt(5) * Sum_{k>=0} (-1)^k/(phi^(2*k+1) + (-1)^k), where phi is the golden ratio (A001622). - _Amiram Eldar_, Oct 04 2020 %F A158933 Equals A153387 - A153386. - _Joerg Arndt_, Oct 04 2020 %F A158933 Equals 1 - A324007. - _Amiram Eldar_, Feb 09 2023 %e A158933 0.2891446485706715831123055096157291669... %p A158933 with(combinat, fibonacci):Digits:=100:s:=0:for n from 1 to 2000 do: a1:=fibonacci(n):s:=s+evalf(1/a1)*(-1)^(n+1):od:print(s): %t A158933 digits = 95; NSum[(-1)^(n+1)*(1/Fibonacci[n]), {n, 1, Infinity}, WorkingPrecision -> digits+1, NSumTerms -> digits] // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Jan 28 2014 *) %o A158933 (PARI) -sumalt(n=1,(-1)^n/fibonacci(n)) \\ _Charles R Greathouse IV_, Oct 03 2016 %Y A158933 Cf. A000045, A001622, A079586. %Y A158933 Cf. A153386, A153387, A324007. %K A158933 nonn,cons,changed %O A158933 0,1 %A A158933 _Michel Lagneau_, Mar 26 2011 %E A158933 Offset corrected by _Arkadiusz Wesolowski_, Jun 28 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE