# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a157036 Showing 1-1 of 1 %I A157036 #34 Jun 27 2024 09:04:07 %S A157036 3,3,27,11,63,21,51,17,813,377,7017,27381,7763,1133,119387,67347, %T A157036 121877 %N A157036 Shorthand for A157035, the largest prime with 2^n digits. %C A157036 The actual prime A157035(n) is obtained as 10^(2^n) - a(n). %F A157036 a(n) = 10^(2^n) - A157035(n). %F A157036 a(n) = A033874(2^n). %p A157036 a:= n-> (t-> t-prevprime(t))(10^(2^n)): %p A157036 seq(a(n), n=0..10); # _Alois P. Heinz_, Mar 02 2022 %o A157036 (PARI) { a(n) = 10^(2^n) - precprime(10^(2^n)) } \\ _Max Alekseyev_, Mar 28 2009 %o A157036 (Python) %o A157036 from sympy import prevprime %o A157036 def a(n): return 10**(2**n) - prevprime(10**(2**n)) %o A157036 print([a(n) for n in range(10)]) # _Michael S. Branicky_, Mar 02 2022 %Y A157036 Cf. A033874, A157034, A157035. %K A157036 nonn,base,more %O A157036 0,1 %A A157036 _Lekraj Beedassy_, Feb 22 2009 %E A157036 a(8)-a(13) from _Ray Chandler_ and _Max Alekseyev_, Mar 22 2009 %E A157036 a(14) from _Jinyuan Wang_, Feb 22 2022 %E A157036 a(15) from _Michael S. Branicky_, Jun 19 2024 %E A157036 a(16) from _Michael S. Branicky_, Jun 27 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE