# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a140106 Showing 1-1 of 1 %I A140106 #52 Sep 18 2023 15:39:16 %S A140106 0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14, %T A140106 14,15,15,16,16,17,17,18,18,19,19,20,20,21,21,22,22,23,23,24,24,25,25, %U A140106 26,26,27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34,35,35,36,36,37 %N A140106 Number of noncongruent diagonals in a regular n-gon. %C A140106 Number of double-stars (diameter 3 trees) with n nodes. For n >= 3, number of partitions of n-2 into two parts. - _Washington Bomfim_, Feb 12 2011 %C A140106 Number of roots of the n-th Bernoulli polynomial in the left half-plane. - _Michel Lagneau_, Nov 08 2012 %C A140106 From _Gus Wiseman_, Oct 17 2020: (Start) %C A140106 Also the number of 3-part non-strict integer partitions of n - 1. The Heinz numbers of these partitions are given by A285508. The version for partitions of any length is A047967, with Heinz numbers A013929. The a(4) = 1 through a(15) = 6 partitions are (A = 10, B = 11, C = 12): %C A140106 111 211 221 222 322 332 333 433 443 444 544 554 %C A140106 311 411 331 422 441 442 533 552 553 644 %C A140106 511 611 522 622 551 633 661 662 %C A140106 711 811 722 822 733 833 %C A140106 911 A11 922 A22 %C A140106 B11 C11 %C A140106 (End) %H A140106 G. C. Greubel, Table of n, a(n) for n = 1..5000 %H A140106 Washington Bomfim, Double-star corresponding to the partition [3,7] %H A140106 Index entries for linear recurrences with constant coefficients, signature (1,1,-1). %H A140106 Index entries for sequences related to trees %F A140106 a(n) = floor((n-2)/2), for n > 1, otherwise 0. - _Washington Bomfim_, Feb 12 2011 %F A140106 G.f.: x^4/(1-x-x^2+x^3). - _Colin Barker_, Jan 31 2012 %F A140106 a(n) = floor(A129194(n-1)/A022998(n)), for n > 1. - _Paul Curtz_, Jul 23 2017 %F A140106 a(n) = A001399(n-3) - A001399(n-6). Compare to A007997(n) = A001399(n-3) + A001399(n-6). - _Gus Wiseman_, Oct 17 2020 %e A140106 The square (n=4) has two congruent diagonals; so a(4)=1. The regular pentagon also has congruent diagonals; so a(5)=1. Among all the diagonals in a regular hexagon, there are two noncongruent ones; hence a(6)=2, etc. %p A140106 with(numtheory): for n from 1 to 80 do:it:=0: %p A140106 y:=[fsolve(bernoulli(n,x) , x, complex)] : for m from 1 to nops(y) do : if Re(y[m])<0 then it:=it+1:else fi:od: printf(`%d, `,it):od: %t A140106 a[1]=0; a[n_?OddQ] := (n-3)/2; a[n_] := n/2-1; Array[a, 100] (* _Jean-François Alcover_, Nov 17 2015 *) %o A140106 (PARI) a(n)=if(n>1,n\2-1,0) \\ _Charles R Greathouse IV_, Oct 16 2015 %o A140106 (Magma) %o A140106 A140106:= func< n | n eq 1 select 0 else Floor((n-2)/2) >; %o A140106 [A140106(n): n in [1..80]]; // _G. C. Greubel_, Feb 10 2023 %o A140106 (SageMath) %o A140106 def A140106(n): return 0 if (n==1) else (n-2)//2 %o A140106 [A140106(n) for n in range(1,81)] # _G. C. Greubel_, Feb 10 2023 %o A140106 (Python) %o A140106 def A140106(n): return n-2>>1 if n>1 else 0 # _Chai Wah Wu_, Sep 18 2023 %Y A140106 Cf. A000554, A007304, A007997, A013929, A022998. %Y A140106 Cf. A047967, A129194, A235451, A285508, A321773. %Y A140106 A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions. %Y A140106 Essentially the same as A004526. %K A140106 nonn,easy %O A140106 1,6 %A A140106 _Andrew McFarland_, Jun 03 2008 %E A140106 More terms from _Joseph Myers_, Sep 05 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE