# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a145562 Showing 1-1 of 1 %I A145562 #14 May 26 2017 02:40:40 %S A145562 1,15,255,5175,123795,3427515,108046575,3824996175,150346471275, %T A145562 6499426608675,306553491419175,15668768604864375,862827112324051875, %U A145562 50929793720847916875,3208139019437586609375,214817175616326677769375,15237402314816854944646875 %N A145562 Second column (m=2) of triangle A049029 (S2(5)). %H A145562 G. C. Greubel, Table of n, a(n) for n = 0..360 %F A145562 a(n) = A049029(n+2,2),n>=0. %F A145562 E.g.f. with offset n=2: ((-1+(1-4*x)^(-1/4))^2)/2!. %F A145562 E.g.f.: (6 - 5*(1-4*x)^(1/4))/(1-4*x)^(5/2) (offset n=0). %F A145562 a(n) = (-4)^n*(8*Sqrt(Pi)/Gamma(-3/2-n)-5*Gamma(-5/4)/Gamma(-5/4-n)). - _Benedict W. J. Irwin_, Apr 06 2017 %t A145562 FullSimplify@Table[(-4)^n(8Sqrt[Pi]/Gamma[-3/2-n]-5Gamma[-5/4]/Gamma[-5/4-n]),{n, 0, 20}] (* _Benedict W. J. Irwin_, Apr 06 2017 *) %o A145562 (PARI) x='x+O('x^50); Vec(serlaplace((6 - 5*(1-4*x)^(1/4))/(1 -4*x)^(5/2))) \\ _G. C. Greubel_, May 25 2017 %Y A145562 First column: A007696 (4-factorials). Third column A143169. %K A145562 nonn,easy %O A145562 0,2 %A A145562 _Wolfdieter Lang_, Oct 17 2008, Dec 04 2008 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE