# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a144536
Showing 1-1 of 1
%I A144536 #44 Dec 18 2021 15:06:08
%S A144536 1,1,7,15,97,209,1351,2911,18817,40545,262087,564719,3650401,7865521,
%T A144536 50843527,109552575,708158977,1525870529,9863382151,21252634831,
%U A144536 137379191137,296011017105,1913445293767,4122901604639,26650854921601,57424611447841,371198523608647
%N A144536 Denominators of continued fraction convergents to sqrt(3)/2.
%H A144536 Vincenzo Librandi, Table of n, a(n) for n = 0..200
%H A144536 John Elias, Double-Snowflake Fraction
%H A144536 Index entries for linear recurrences with constant coefficients, signature (0,14,0,-1).
%F A144536 G.f.: (1 + x - 7*x^2 + x^3)/(1 - 14*x^2 + x^4). - _Colin Barker_, Jan 01 2012
%F A144536 a(n) = 14*a(n-2) - a(n-4). - _Sergei N. Gladkovskii_, Jun 07 2015
%F A144536 a(n) = ((3+sqrt(3))*((-2+sqrt(3))^n + (2+sqrt(3))^n) - (-3+sqrt(3))*((-2-sqrt(3))^n + (2-sqrt(3))^n))/12. - _Vaclav Kotesovec_, Jun 08 2015
%F A144536 From _John Elias_, Dec 02 2021: (Start)
%F A144536 a(2*n) = 6*A001353(n)^2 + 1. See illustration in links.
%F A144536 a(2*n+1) = 2*a(2*n) + a(2*n-1). (End)
%e A144536 0, 1, 6/7, 13/15, 84/97, 181/209, 1170/1351, 2521/2911, 16296/18817, 35113/40545, ...
%p A144536 with(numtheory); Digits:=200: cf:=convert(evalf(sqrt(3)/2,confrac); [seq(nthconver(cf,i), i=0..100)];
%t A144536 Denominator[Convergents [Sqrt[3]/2, 30]] (* _Vincenzo Librandi_, Feb 01 2014 *)
%t A144536 LinearRecurrence[{0,14,0,-1},{1,1,7,15},30] (* _Harvey P. Dale_, Sep 15 2017 *)
%Y A144536 Cf. A126664, A144535, A002531/A002530.
%Y A144536 Bisections give A011943, A028230.
%K A144536 nonn,easy,frac
%O A144536 0,3
%A A144536 _N. J. A. Sloane_, Dec 29 2008
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE