# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a107144 Showing 1-1 of 1 %I A107144 #23 Sep 08 2022 08:45:18 %S A107144 5,13,37,53,157,173,197,277,293,317,373,397,557,613,653,677,733,757, %T A107144 773,797,853,877,997,1013,1093,1117,1213,1237,1277,1373,1453,1493, %U A107144 1597,1613,1637,1693,1733,1877,1933,1973,1997,2053,2213,2237,2293 %N A107144 Primes of the form 5x^2 + 8y^2. %C A107144 Discriminant = -160. See A107132 for more information. %C A107144 Except for 5, also primes of the form 13x^2 + 8xy + 32y^2. See A140633. - _T. D. Noe_, May 19 2008 %H A107144 Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi] %H A107144 N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references) %F A107144 Except for 5, the primes are congruent to {13, 37} (mod 40). - _T. D. Noe_, May 02 2008 %t A107144 QuadPrimes2[5, 0, 8, 10000] (* see A106856 *) %o A107144 (Magma) [5] cat [ p: p in PrimesUpTo(3000) | p mod 40 in {13, 37} ]; // _Vincenzo Librandi_, Jul 24 2012 %o A107144 (PARI) list(lim)=my(v=List([5]),t); forprime(p=13,lim, t=p%40; if(t==13||t==37, listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 09 2017 %Y A107144 Cf. A139827. %K A107144 nonn,easy %O A107144 1,1 %A A107144 _T. D. Noe_, May 13 2005 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE