# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a091962
Showing 1-1 of 1
%I A091962 #51 Jan 14 2025 10:34:26
%S A091962 0,1,42,594,4719,26026,111384,395352,1215126,3331251,8321170,19240650,
%T A091962 41683005,85408596,166768096,312203232,563178924,982981701,1665911754,
%U A091962 2749500754,4430505387,6985558206,10797503640,16388608600,24462014850,35952994935,52091785746
%N A091962 From enumerating paths in the plane.
%C A091962 a(n+1) is the determinant of the n X n Hankel matrix [C(i+j+3)]_{i,j=1..n} where C(n) = A000108(n), the n-th Catalan number. - _Michael Somos_, Jun 27 2023
%D A091962 R. P. Stanley, Enumerative Combinatorics, volume 1 (1986), p. 221, Example 4.5.18.
%H A091962 T. D. Noe, Table of n, a(n) for n = 0..1000
%H A091962 Myriam de Sainte-Catherine, Couplages et Pfaffiens en Combinatoire, Physique et Informatique, PhD Dissertation, Université Bordeaux I, 1983. (Annotated scanned copy of pages III.42-III.45)
%H A091962 G. Kreweras and H. Niederhausen, Solution of an enumerative problem connected with lattice paths, European J. Combin., 2 (1981), 55-60.
%H A091962 Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 24.
%H A091962 Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
%F A091962 a(n) = binomial(2*n+6, 7)*(2*n+3)*(n+1)*(n+2)/240.
%F A091962 G.f.: x*(1 + 31*x + 187*x^2 + 330*x^3 + 187*x^4 + 31*x^5 + x^6)/(1-x)^11. - _Colin Barker_, May 07 2012
%F A091962 a(n) = det(A*Transpose(A))/36, where A is the 2 X (n+1) matrix whose (i,j)-th element is j^(2*i-1). - _Lechoslaw Ratajczak_, Oct 01 2017
%F A091962 a(n) = binomial(2*n+4, 3)*binomial(2*n+6, 7)/160. - _G. C. Greubel_, Dec 17 2021
%F A091962 a(n) = a(-3-n) for all n in Z. - _Michael Somos_, Jun 27 2023
%F A091962 a(n) ~ n^10/4725. - _Stefano Spezia_, Dec 09 2023
%e A091962 G.f. = x + 42*x^2 + 594*x^3 + 4719*x^4 + 26026*x^5 + 111384*x^6 + ... - _Michael Somos_, Jun 27 2023
%t A091962 LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,1,42,594,4719,26026,111384,395352,1215126,3331251,8321170},30] (* _Harvey P. Dale_, Apr 15 2017 *)
%o A091962 (PARI) a(n) = binomial(2*n+6, 7)*(2*n+3)*(n+1)*(n+2)/240; \\ _Michel Marcus_, Oct 13 2016
%o A091962 (Sage) [product(binomial(2*(n+j+2), 4*j+3) for j in (0..1))/160 for n in (0..30)] # _G. C. Greubel_, Dec 17 2021
%Y A091962 Cf. A000108.
%Y A091962 Cf. A000012, A000027, A000330, A006858 (Hankel determinants of Catalan numbers). - _Michael Somos_, Jun 27 2023
%K A091962 nonn,easy
%O A091962 0,3
%A A091962 _Philippe Deléham_, Mar 13 2004
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE