# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a088550 Showing 1-1 of 1 %I A088550 #31 Aug 13 2024 19:11:10 %S A088550 7,127,1093,19531,55987,5229043,8108731,25646167,321272407,917087137, %T A088550 3092313043,4201025641,9684836827,31401724537,47446779661,52379047267, %U A088550 83925549247,100343116693,141276239497,153436090543,265462278481 %N A088550 Primes of the form n^6 + n^5 + n^4 + n^3 + n^2 + n + 1. %C A088550 These numbers, starting with 127, are repunit primes 1111111_n in a base n >= 2, so except 7, they are all Brazilian primes belonging to A085104. In fact, 7 = 111_2 is also Brazilian by this other way. (See Links "Les nombres brésiliens", § V.4 -§ V.5.) A088550 is generated by the bases n present in A100330. - _Bernard Schott_, Dec 20 2012 %H A088550 Vincenzo Librandi, Table of n, a(n) for n = 1..1000 %H A088550 Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38. %H A088550 Bernard Schott, Les nombres brésiliens, Reprinted from Quadrature, no. 76, avril-juin 2010, pages 30-38, included here with permission from the editors of Quadrature. %e A088550 a(3) = 1093 = 3^6 + 3^5 + 3^4 + 3^3 + 3^2 + 3 + 1 is prime. %p A088550 A088550 := proc(n) %p A088550 numtheory[cyclotomic](7,A100330(n)) ; %p A088550 end proc: %p A088550 seq(A088550(n),n=1..30) ; %t A088550 Select[Table[n^6 + n^5 + n^4 + n^3 + n^2 + n + 1, {n, 100}], PrimeQ] (* _Alonso del Arte_, Feb 07 2014 *) %t A088550 Select[Table[Total[n^Range[0,6]],{n,100}],PrimeQ] (* _Harvey P. Dale_, Aug 13 2024 *) %o A088550 (PARI) polypn(n,p) = { for(x=1,n, if(p%2,y=2,y=1); for(m=1,p, y=y+x^m; ); if(isprime(y),print1(y",")); ) } %o A088550 (Magma) [a: n in [0..100] | IsPrime(a) where a is 1+n+n^2+n^3+n^4+n^5+n^6] ; // _Vincenzo Librandi_, Jul 14 2012 %Y A088550 Cf. A085104, A100330. %K A088550 nonn,easy %O A088550 1,1 %A A088550 _Cino Hilliard_, Nov 17 2003 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE