# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a084941 Showing 1-1 of 1 %I A084941 #30 May 02 2022 07:59:12 %S A084941 1,1,8,168,6720,436800,41932800,5577062400,981562982400, %T A084941 220851671040000,61838467891200000,21086917550899200000, %U A084941 8603462360766873600000,4138265395528866201600000,2317428621496165072896000000 %N A084941 Octagorials: n-th polygorial for k=8. %H A084941 Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003. %F A084941 a(n) = polygorial(n, 8) = (A000142(n)/A000079(n))*A047657(n) = (n!/2^n)*Product_{i=0..n-1} (6*i+2) = (n!/2^n)*6^n*Pochhammer(1/3, n) = (n!/2)*3^n*sqrt(3)*GAMMA(n+1/3)*GAMMA(2/3)/Pi. %F A084941 D-finite with recurrence a(n) = n*(3*n-2)*a(n-1). - _R. J. Mathar_, Mar 12 2019 %p A084941 a := n->n!/2^n*product(6*i+2,i=0..n-1); [seq(a(j),j=0..30)]; %t A084941 polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[8, #] &, 16, 0] (* _Robert G. Wilson v_, Dec 26 2016 *) %o A084941 (PARI) a(n) = n! / 2^n * prod(i=0, n-1, 6*i+2) \\ _Felix Fröhlich_, Dec 13 2016 %Y A084941 Cf. A006472, A001044, A000680, A084939, A084940, A084942, A084943, A084944, A085356. %K A084941 easy,nonn %O A084941 0,3 %A A084941 Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE