# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a077951 Showing 1-1 of 1 %I A077951 #17 Sep 08 2022 08:45:08 %S A077951 1,1,0,1,3,2,1,5,8,5,7,18,21,17,32,57,59,66,121,173,184,253,415,530, %T A077951 621,921,1360,1681,2163,3202,4401,5525,7528,10805,14327,18578,25861, %U A077951 35937,47232,63017,87659,119106,157481,213693,294424,395693,528655,721810,984541,1320041 %N A077951 Expansion of 1/(1-x+x^2-2*x^3). %H A077951 Vincenzo Librandi, Table of n, a(n) for n = 0..1000 %H A077951 Index entries for linear recurrences with constant coefficients, signature (1, -1, 2). %t A077951 LinearRecurrence[{1, -1, 2}, {1, 1, 0}, 60] (* _Vladimir Joseph Stephan Orlovsky_, Feb 23 2012 *) %t A077951 CoefficientList[Series[1/(1-x+x^2-2*x^3), {x,0,50}], x] (* _G. C. Greubel_, Jul 03 2019 *) %o A077951 (PARI) Vec(1/(1-x+x^2-2*x^3)+O(x^50)) \\ _Charles R Greathouse IV_, Sep 27 2012 %o A077951 (Magma) R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-x+x^2-2*x^3) )); // _G. C. Greubel_, Jul 03 2019 %o A077951 (Sage) (1/(1-x+x^2-2*x^3)).series(x, 50).coefficients(x, sparse=False) # _G. C. Greubel_, Jul 03 2019 %o A077951 (GAP) a:=[1,1,0];; for n in [4..50] do a[n]:= a[n-1]-a[n-2]+2*a[n-3]; od; a; # _G. C. Greubel_, Jul 03 2019 %K A077951 nonn,easy %O A077951 0,5 %A A077951 _N. J. A. Sloane_, Nov 17 2002 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE