# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a051291 Showing 1-1 of 1 %I A051291 #5 Mar 19 2015 09:40:24 %S A051291 1,2,3,7,17,40,97,238,587,1458,3640,9124,22951,57904,146461,371281, %T A051291 943045,2399460,6114555,15603339,39866932,101976512,261117378, %U A051291 669239402,1716737267,4407306170,11323050897,29110603423,74888578067 %N A051291 Whitney number of level n of the lattice of the ideals of the fence of order 2 n + 1. %C A051291 This is the second kind of Whitney numbers, which count elements, not to be confused with the first kind, which sum Mobius functions. - _Thomas Zaslavsky_, May 07 2008 %D A051291 E. Munarini, N. Zagaglia Salvi, On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns, Discrete Mathematics 259 (2002), 163-177. %F A051291 G.f.: function = (1+2*t^2-t^3-(1-t)*sqrt(1-2*t-t^2-2*t^3+t^4))/(2*t*sqrt(1-2*t-t^2-2*t^3+t^4)) %e A051291 a(2) = 3 because the ideals of size 2 of the fence F(5) = { x1 < x2 > x3 < x4 > x5 } are x1x2, x1x3, x2x3. %Y A051291 Cf. A051286, A051292. %K A051291 nonn %O A051291 0,2 %A A051291 _Emanuele Munarini_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE