# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a058853 Showing 1-1 of 1 %I A058853 #39 Sep 08 2022 08:45:02 %S A058853 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89, %T A058853 97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,179,181, %U A058853 191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277 %N A058853 Primes p such that x^43 = 2 has a solution mod p. %C A058853 Primes not of the form 43k + 1. - _Charles R Greathouse IV_, Aug 22 2011 [Not so! The smallest counterexample is 5419: 5419 = 43*126 + 1, but 2^43 == 2 (mod 5419), so it is here. - _Jianing Song_, Mar 07 2021] %C A058853 Differs from A000040 - the prime 173 does not appear. %C A058853 For case x^31 = 2 the first missing prime is 311 (64th term). %C A058853 For case x^47 = 2 the first missing prime is 283 (61st term). %C A058853 For case x^59 = 2 the first missing prime is 709 (127th term). %C A058853 For case x^61 = 2 the first missing prime is 367 (73rd term). %C A058853 Complement of A059243 relative to A000040. - _Vincenzo Librandi_, Sep 14 2012 %C A058853 From _Jianing Song_, Mar 07 2021: (Start) %C A058853 It is conjectured that this sequence has density 42/43 ~ 0.976744 over all the primes. %C A058853 N | # of terms among %C A058853 | the first N primes %C A058853 ------+-------------------- %C A058853 10^4 | 9758 %C A058853 10^5 | 97681 %C A058853 10^6 | 976798 %C A058853 10^7 | 9767551 %C A058853 10^8 | 97674723 %C A058853 If the conjecture is correct, then a(n) ~ 43/42 * n log n. %C A058853 In general, let p be a prime, a be an integer that is not a p-th power, then it seems that the density of prime factors of x^p - a over all the primes is 1 - 1/p. This is well-known to be correct for p = 2. (End) %C A058853 The generalized conjecture above is equivalent to: let P(p,1) be the set of primes congruent to 1 modulo p, P(p,1;a) be the set of primes q congruent to 1 modulo p such that x^p == a (mod q) has a solution, where p is a prime, a is not a p-th power, then the density of P(p,1;a) over P(p,1) is 1/p. - _Jianing Song_, Mar 09 2021 %H A058853 R. J. Mathar, Table of n, a(n) for n = 1..1000 %H A058853 Index entries for related sequences %t A058853 ok[p_]:= Reduce[Mod[x^43 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[1000]], ok] (* _Vincenzo Librandi_ Sep 14 2012 *) %o A058853 (Magma) [p: p in PrimesUpTo(400) | exists(t){x : x in ResidueClassRing(p) | x^43 eq 2}]; // _Vincenzo Librandi_ Sep 14 2012 %o A058853 (PARI) isA058853(p) = isprime(p) && ispower(Mod(2,p), 43) \\ _Jianing Song_, Mar 07 2021 %K A058853 nonn,easy %O A058853 1,1 %A A058853 _Patrick De Geest_, Dec 15 2000 %E A058853 The old formula "a(n) ~ 42/41 * n log n" based on false observation from _Charles R Greathouse IV_, Aug 22 2011 removed by _Jianing Song_, Mar 07 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE