# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a055067 Showing 1-1 of 1 %I A055067 #31 Jun 26 2022 02:19:02 %S A055067 1,1,2,3,24,20,720,630,13440,36288,3628800,277200,479001600,444787200, %T A055067 5811886080,20432412000,20922789888000,1097800704000,6402373705728000, %U A055067 304112751022080,115852476579840000,2322315553259520000 %N A055067 Product of numbers < n which do not divide n (or 1 if no such numbers exist). %H A055067 Reinhard Zumkeller, Table of n, a(n) for n = 1..250 %F A055067 a(n) = A000142(n)/A007955(n). %e A055067 a(5)=2*3*4=24, a(6)=4*5=20. %t A055067 Table[Apply[Times, Complement[Range[n], Divisors[n]]], {n, 1, 20}] (* _Geoffrey Critzer_, Dec 13 2014 *) %t A055067 a[n_] := n!/n^(DivisorSigma[0, n]/2); Array[a, 25] (* _Amiram Eldar_, Jun 26 2022 *) %o A055067 (Haskell) %o A055067 a055067 n = product [k | k <- [1..n], mod n k /= 0] %o A055067 -- _Reinhard Zumkeller_, Feb 06 2012 %o A055067 (PARI) a(n) = n!/vecprod(divisors(n)); \\ _Michel Marcus_, Dec 26 2021 %o A055067 (Python) %o A055067 from math import factorial, isqrt %o A055067 from sympy import divisor_count %o A055067 def A055067(n): return factorial(n)//(isqrt(n)**c if (c:=divisor_count(n)) & 1 else n**(c//2)) # _Chai Wah Wu_, Jun 25 2022 %Y A055067 Cf. A024816. %Y A055067 Cf. A173540, A072046. %Y A055067 Cf. A000142, A007955. %K A055067 easy,nonn %O A055067 1,3 %A A055067 _Henry Bottomley_, Jun 12 2000 %E A055067 More terms from _David Wasserman_, Mar 15 2002 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE