# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a048793 Showing 1-1 of 1 %I A048793 #33 Feb 01 2023 14:34:08 %S A048793 0,1,2,1,2,3,1,3,2,3,1,2,3,4,1,4,2,4,1,2,4,3,4,1,3,4,2,3,4,1,2,3,4,5, %T A048793 1,5,2,5,1,2,5,3,5,1,3,5,2,3,5,1,2,3,5,4,5,1,4,5,2,4,5,1,2,4,5,3,4,5, %U A048793 1,3,4,5,2,3,4,5,1,2,3,4,5,6,1,6,2,6,1,2,6,3,6,1,3,6,2,3,6,1,2,3,6,4,6,1,4 %N A048793 List giving all subsets of natural numbers arranged in standard statistical (or Yates) order. %C A048793 For n>0: first occurrence of n in row 2^(n-1), and when the table is seen as a flattened list at position n*2^(n-1)+1, cf. A005183. - _Reinhard Zumkeller_, Nov 16 2013 %C A048793 Row n lists the positions of 1's in the reversed binary expansion of n. Compare to triangles A112798 and A213925. - _Gus Wiseman_, Jul 22 2019 %D A048793 S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays, Springer-Verlag, NY, 1999, p. 249. %H A048793 Reinhard Zumkeller, Rows n = 0..1000 of triangle, flattened %F A048793 Constructed recursively: subsets that include n are obtained by appending n to all earlier subsets. %e A048793 From _Gus Wiseman_, Jul 22 2019: (Start) %e A048793 Triangle begins: %e A048793 {} %e A048793 1 %e A048793 2 %e A048793 1 2 %e A048793 3 %e A048793 1 3 %e A048793 2 3 %e A048793 1 2 3 %e A048793 4 %e A048793 1 4 %e A048793 2 4 %e A048793 1 2 4 %e A048793 3 4 %e A048793 1 3 4 %e A048793 2 3 4 %e A048793 1 2 3 4 %e A048793 5 %e A048793 1 5 %e A048793 2 5 %e A048793 1 2 5 %e A048793 3 5 %e A048793 (End) %p A048793 T:= proc(n) local i, l, m; l:= NULL; m:= n; %p A048793 if n=0 then return 0 fi; for i while m>0 do %p A048793 if irem(m, 2, 'm')=1 then l:=l, i fi od; l %p A048793 end: %p A048793 seq(T(n), n=0..50); # _Alois P. Heinz_, Sep 06 2014 %t A048793 s[0] = {{}}; s[n_] := s[n] = Join[s[n - 1], Append[#, n]& /@ s[n - 1]]; Join[{0}, Flatten[s[6]]] (* _Jean-François Alcover_, May 24 2012 *) %t A048793 Table[Join@@Position[Reverse[IntegerDigits[n,2]],1],{n,30}] (* _Gus Wiseman_, Jul 22 2019 *) %o A048793 (C) %o A048793 #include %o A048793 #include %o A048793 #define USAGE "Usage: 'A048793 num' where num is the largest number to use creating sets.\n" %o A048793 #define MAX_NUM 10 %o A048793 #define MAX_ROW 1024 %o A048793 int main(int argc, char *argv[]) { %o A048793 unsigned short a[MAX_ROW][MAX_NUM]; signed short old_row, new_row, i, j, end; %o A048793 if (argc < 2) { fprintf(stderr, USAGE); return EXIT_FAILURE; } %o A048793 end = atoi(argv[1]); end = (end > MAX_NUM) ? MAX_NUM: end; %o A048793 for (i = 0; i < MAX_ROW; i++) for ( j = 0; j < MAX_NUM; j++) a[i][j] = 0; %o A048793 a[1][0] = 1; new_row = 2; %o A048793 for (i = 2; i <= end; i++) { %o A048793 a[new_row++ ][0] = i; %o A048793 for (old_row = 1; a[old_row][0] != i; old_row++) { %o A048793 for (j = 0; a[old_row][j] != 0; j++) { a[new_row][j] = a[old_row][j]; } %o A048793 a[new_row++ ][j] = i; %o A048793 } %o A048793 } %o A048793 fprintf(stdout, "Values: 0"); %o A048793 for (i = 1; a[i][0] != 0; i++) for (j = 0; a[i][j] != 0; j++) fprintf(stdout, ",%d", a[i][j]); %o A048793 fprintf(stdout, "\n"); return EXIT_SUCCESS %o A048793 } %o A048793 (Haskell) %o A048793 a048793 n k = a048793_tabf !! n !! k %o A048793 a048793_row n = a048793_tabf !! n %o A048793 a048793_tabf = [0] : [1] : f [[1]] where %o A048793 f xss = yss ++ f (xss ++ yss) where %o A048793 yss = [y] : map (++ [y]) xss %o A048793 y = last (last xss) + 1 %o A048793 -- _Reinhard Zumkeller_, Nov 16 2013 %Y A048793 Cf. A048794. %Y A048793 Row lengths are A000120. %Y A048793 First column is A001511. %Y A048793 Heinz numbers of rows are A019565. %Y A048793 Row sums are A029931. %Y A048793 Reversing rows gives A272020. %Y A048793 Subtracting 1 from each term gives A133457; subtracting 1 and reversing rows gives A272011. %Y A048793 Indices of relatively prime rows are A291166 (see also A326674); arithmetic progressions are A295235; rows with integer average are A326669 (see also A326699/A326700); pairwise coprime rows are A326675. %Y A048793 Cf. A035327, A070939. %K A048793 nonn,tabf,easy,nice %O A048793 0,3 %A A048793 _N. J. A. Sloane_ %E A048793 More terms from Larry Reeves (larryr(AT)acm.org), Apr 11 2000 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE