# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a032295 Showing 1-1 of 1 %I A032295 #23 Apr 30 2019 08:24:52 %S A032295 4,6,16,45,132,404,1296,4380,15064,53622,192696,703895,2589300, %T A032295 9606744,35824088,134297280,505421340,1909194056,7234153416, %U A032295 27489073899,104717489748,399827555604,1529763696816 %N A032295 Number of aperiodic bracelets (turn over necklaces) with n beads of 4 colors. %H A032295 C. G. Bower, Transforms (2) %H A032295 F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. %H A032295 F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only] %H A032295 N. J. A. Sloane, Transforms %H A032295 Index entries for sequences related to bracelets %F A032295 MOEBIUS transform of A032275. %F A032295 From _Herbert Kociemba_, Nov 28 2016: (Start) %F A032295 More generally, gf(k) is the g.f. for the number of bracelets with primitive period n and beads of k colors. %F A032295 gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n + Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End) %t A032295 mx=40;gf[x_,k_]:=Sum[ MoebiusMu[n]*(-Log[1-k*x^n]/n+Sum[Binomial[k,i]x^(n i),{i,0,2}]/( 1-k x^(2n)))/2,{n,mx}]; CoefficientList[Series[gf[x,4],{x,0,mx}],x] (* _Herbert Kociemba_, Nov 28 2016 *) %Y A032295 Column 4 of A276550. %K A032295 nonn %O A032295 1,1 %A A032295 _Christian G. Bower_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE